Hector Galante, Anca Belme, Jean-Camille Chassaing, Timothy Wildey
{"title":"SOLVING STOCHASTIC INVERSE PROBLEMS FOR CFD USING DATA-CONSISTENT INVERSION AND AN ADAPTIVE STOCHASTIC COLLOCATION METHOD","authors":"Hector Galante, Anca Belme, Jean-Camille Chassaing, Timothy Wildey","doi":"10.1615/int.j.uncertaintyquantification.2024049566","DOIUrl":null,"url":null,"abstract":"We present a non-intrusive adaptive stochastic collocation method coupled with a data-consistent inference framework to optimize stochastic inverse problems solve in CFD. The purpose of the proposed data-consistent method is, given a model and some observed output probability density function (pdf), to build a new model input pdf which is consistent with both the model and the data. Solving stochastic inverse problems in CFD is however very costly, which is why we use a surrogate or metamodel in the data-consistent inference method. This surrogate model is built using an adaptive stochastic collocation approach based on a stochastic error estimator and simplex elements in the parameters space. The efficiency of the proposed method is evaluated on analytical test cases and two CFD configurations. The metamodel inference results are shown to be as accurate as crude Monte Carlo inferences while performing 103 less deterministic computations for smooth and discontinuous response surfaces. Moreover, the proposed method is shown to be able to reconstruct both an observed pdf on the data and a data-generating distribution in the uncertain parameter space under certain conditions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024049566","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a non-intrusive adaptive stochastic collocation method coupled with a data-consistent inference framework to optimize stochastic inverse problems solve in CFD. The purpose of the proposed data-consistent method is, given a model and some observed output probability density function (pdf), to build a new model input pdf which is consistent with both the model and the data. Solving stochastic inverse problems in CFD is however very costly, which is why we use a surrogate or metamodel in the data-consistent inference method. This surrogate model is built using an adaptive stochastic collocation approach based on a stochastic error estimator and simplex elements in the parameters space. The efficiency of the proposed method is evaluated on analytical test cases and two CFD configurations. The metamodel inference results are shown to be as accurate as crude Monte Carlo inferences while performing 103 less deterministic computations for smooth and discontinuous response surfaces. Moreover, the proposed method is shown to be able to reconstruct both an observed pdf on the data and a data-generating distribution in the uncertain parameter space under certain conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.