{"title":"Pointwise data depth for univariate and multivariate functional outlier detection","authors":"Cristian F. Jiménez-Varón, Fouzi Harrou, Ying Sun","doi":"10.1002/env.2851","DOIUrl":null,"url":null,"abstract":"<p>Data depth is an efficient tool for robustly summarizing the distribution of functional data and detecting potential magnitude and shape outliers. Commonly used functional data depth notions, such as the modified band depth and extremal depth, are estimated from pointwise depth for each observed functional observation. However, these techniques require calculating one single depth value for each functional observation, which may not be sufficient to characterize the distribution of the functional data and detect potential outliers. This article presents an innovative approach to make the best use of pointwise depth. We propose using the pointwise depth distribution for magnitude outlier visualization and the correlation between pairwise depth for shape outlier detection. Furthermore, a bootstrap-based testing procedure has been introduced for the correlation to test whether there is any shape outlier. The proposed univariate methods are then extended to bivariate functional data. The performance of the proposed methods is examined and compared to conventional outlier detection techniques by intensive simulation studies. In addition, the developed methods are applied to simulated solar energy datasets from a photovoltaic system. Results revealed that the proposed method offers superior detection performance over conventional techniques. These findings will benefit engineers and practitioners in monitoring photovoltaic systems by detecting unnoticed anomalies and outliers.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2851","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Data depth is an efficient tool for robustly summarizing the distribution of functional data and detecting potential magnitude and shape outliers. Commonly used functional data depth notions, such as the modified band depth and extremal depth, are estimated from pointwise depth for each observed functional observation. However, these techniques require calculating one single depth value for each functional observation, which may not be sufficient to characterize the distribution of the functional data and detect potential outliers. This article presents an innovative approach to make the best use of pointwise depth. We propose using the pointwise depth distribution for magnitude outlier visualization and the correlation between pairwise depth for shape outlier detection. Furthermore, a bootstrap-based testing procedure has been introduced for the correlation to test whether there is any shape outlier. The proposed univariate methods are then extended to bivariate functional data. The performance of the proposed methods is examined and compared to conventional outlier detection techniques by intensive simulation studies. In addition, the developed methods are applied to simulated solar energy datasets from a photovoltaic system. Results revealed that the proposed method offers superior detection performance over conventional techniques. These findings will benefit engineers and practitioners in monitoring photovoltaic systems by detecting unnoticed anomalies and outliers.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.