Pointwise convergence of the heat and subordinates of the heat semigroups associated with the Laplace operator on homogeneous trees and two weighted Lp maximal inequalities
{"title":"Pointwise convergence of the heat and subordinates of the heat semigroups associated with the Laplace operator on homogeneous trees and two weighted Lp maximal inequalities","authors":"I. Alvarez-Romero, B. Barrios, J. J. Betancor","doi":"10.1142/s021919972450010x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the heat semigroup <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy=\"false\">}</mo></mrow><mrow><mi>t</mi><mo>></mo><mn>0</mn></mrow></msub></math></span><span></span> defined by the combinatorial Laplacian and two subordinated families of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy=\"false\">}</mo></mrow><mrow><mi>t</mi><mo>></mo><mn>0</mn></mrow></msub></math></span><span></span> on homogeneous trees <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span>. We characterize the weights <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>u</mi></math></span><span></span> on <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> for which the pointwise convergence to initial data of the above families holds for every <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>u</mi><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>∞</mi></math></span><span></span>, where <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>μ</mi></math></span><span></span> represents the counting measure in <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span>. We prove that this convergence property in <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> is equivalent to the fact that the maximal operator on <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mi>R</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, for some <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi><mo>></mo><mn>0</mn></math></span><span></span>, defined by the semigroup is bounded from <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>u</mi><mo stretchy=\"false\">)</mo></math></span><span></span> into <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>v</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for some weight <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi></math></span><span></span> on <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span>.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"21 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021919972450010x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the heat semigroup defined by the combinatorial Laplacian and two subordinated families of on homogeneous trees . We characterize the weights on for which the pointwise convergence to initial data of the above families holds for every with , where represents the counting measure in . We prove that this convergence property in is equivalent to the fact that the maximal operator on , for some , defined by the semigroup is bounded from into for some weight on .
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.