Pointwise convergence of the heat and subordinates of the heat semigroups associated with the Laplace operator on homogeneous trees and two weighted Lp maximal inequalities

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
I. Alvarez-Romero, B. Barrios, J. J. Betancor
{"title":"Pointwise convergence of the heat and subordinates of the heat semigroups associated with the Laplace operator on homogeneous trees and two weighted Lp maximal inequalities","authors":"I. Alvarez-Romero, B. Barrios, J. J. Betancor","doi":"10.1142/s021919972450010x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the heat semigroup <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy=\"false\">}</mo></mrow><mrow><mi>t</mi><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span><span></span> defined by the combinatorial Laplacian and two subordinated families of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy=\"false\">}</mo></mrow><mrow><mi>t</mi><mo>&gt;</mo><mn>0</mn></mrow></msub></math></span><span></span> on homogeneous trees <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span>. We characterize the weights <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>u</mi></math></span><span></span> on <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> for which the pointwise convergence to initial data of the above families holds for every <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>u</mi><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></math></span><span></span>, where <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>μ</mi></math></span><span></span> represents the counting measure in <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span>. We prove that this convergence property in <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> is equivalent to the fact that the maximal operator on <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mi>R</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, for some <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span>, defined by the semigroup is bounded from <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>u</mi><mo stretchy=\"false\">)</mo></math></span><span></span> into <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>v</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for some weight <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi></math></span><span></span> on <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021919972450010x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the heat semigroup {Wt}t>0 defined by the combinatorial Laplacian and two subordinated families of {Wt}t>0 on homogeneous trees X. We characterize the weights u on X for which the pointwise convergence to initial data of the above families holds for every fLp(X,μ,u) with 1p<, where μ represents the counting measure in X. We prove that this convergence property in X is equivalent to the fact that the maximal operator on t(0,R), for some R>0, defined by the semigroup is bounded from Lp(X,μ,u) into Lp(X,μ,v) for some weight v on X.

同质树上与拉普拉斯算子相关的热半群的点收敛性和从属性以及两个加权Lp最大不等式
本文考虑了由组合拉普拉奇定义的热半群{Wt}t>0和同质树X上{Wt}t>0的两个从属族。我们描述了X上的权值u,对于这些权值u,上述族的点式收敛到初始数据对于每个f∈Lp(X,μ,u)都成立,且1≤p<∞,其中μ代表X中的计数度量。我们将证明,对于 X 上的某个权重 v,X 中的这一收敛特性等同于这样一个事实:对于某个 R>0,由半群定义的 t∈(0,R)上的最大算子从 Lp(X,μ,u) 到 Lp(X,μ,v) 是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信