Nonlinear Variational Inequalities with Bilateral Constraints Coinciding on a Set of Positive Measure

IF 0.5 4区 数学 Q3 MATHEMATICS
A. A. Kovalevsky
{"title":"Nonlinear Variational Inequalities with Bilateral Constraints Coinciding on a Set of Positive Measure","authors":"A. A. Kovalevsky","doi":"10.1134/S1064562424701813","DOIUrl":null,"url":null,"abstract":"<p>We consider variational inequalities with invertible operators <span>\\({{\\mathcal{A}}_{s}}{\\text{:}}~\\,W_{0}^{{1,p}}\\left( {{\\Omega }} \\right) \\to {{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right),\\)</span> <span>\\(s \\in \\mathbb{N},\\)</span> in divergence form and with constraint set <span>\\(V = \\{ {v} \\in W_{0}^{{1,p}}\\left( {{\\Omega }} \\right){\\text{: }}\\varphi \\leqslant {v} \\leqslant \\psi ~\\)</span> a.e. in <span>\\({{\\Omega }}\\} ,\\)</span> where <span>\\({{\\Omega }}\\)</span> is a nonempty bounded open set in <span>\\({{\\mathbb{R}}^{n}}\\)</span> <span>\\(\\left( {n \\geqslant 2} \\right)\\)</span>, <i>p</i> &gt; 1, and <span>\\(\\varphi ,\\psi {{:\\;\\Omega }} \\to \\bar {\\mathbb{R}}\\)</span> are measurable functions. Under the assumptions that the operators <span>\\({{\\mathcal{A}}_{s}}\\)</span> <i>G-</i>converge to an invertible operator <span>\\(\\mathcal{A}{\\text{: }}W_{0}^{{1,p}}\\left( {{\\Omega }} \\right) \\to {{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right)\\)</span>, <span>\\({\\text{int}}\\left\\{ {\\varphi = \\psi } \\right\\} \\ne \\varnothing ,\\)</span> <span>\\({\\text{meas}}\\left( {\\partial \\left\\{ {\\varphi = \\psi } \\right\\} \\cap {{\\Omega }}} \\right)\\)</span> = 0, and there exist functions <span>\\(\\bar {\\varphi },\\bar {\\psi } \\in W_{0}^{{1,p}}\\left( {{\\Omega }} \\right)\\)</span> such that <span>\\(\\varphi \\leqslant \\overline {\\varphi ~} \\leqslant \\bar {\\psi } \\leqslant \\psi \\)</span> a.e. in <span>\\({{\\Omega }}\\)</span> and <span>\\({\\text{meas}}\\left( {\\left\\{ {\\varphi \\ne \\psi } \\right\\}{{\\backslash }}\\left\\{ {\\bar {\\varphi } \\ne \\bar {\\psi }} \\right\\}} \\right) = 0,\\)</span> we establish that the solutions <i>u</i><sub><i>s</i></sub> of the variational inequalities converge weakly in <span>\\(W_{0}^{{1,p}}\\left( {{\\Omega }} \\right)\\)</span> to the solution <i>u</i> of a similar variational inequality with the operator <span>\\(\\mathcal{A}\\)</span> and the constraint set <i>V</i>. The fundamental difference of the considered case from the previously studied one in which <span>\\({\\text{meas}}\\left\\{ {\\varphi = \\psi } \\right\\} = 0\\)</span> is that, in general, the functionals <span>\\({{\\mathcal{A}}_{s}}{{u}_{s}}\\)</span> do not converge to <span>\\(\\mathcal{A}u\\)</span> even weakly in <span>\\({{W}^{{ - 1,p'}}}\\left( {{\\Omega }} \\right)\\)</span> and the energy integrals <span>\\(\\langle {{\\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\\rangle \\)</span> do not converge to <span>\\(\\langle \\mathcal{A}u,u\\rangle \\)</span>.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"109 1","pages":"62 - 65"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701813","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider variational inequalities with invertible operators \({{\mathcal{A}}_{s}}{\text{:}}~\,W_{0}^{{1,p}}\left( {{\Omega }} \right) \to {{W}^{{ - 1,p'}}}\left( {{\Omega }} \right),\) \(s \in \mathbb{N},\) in divergence form and with constraint set \(V = \{ {v} \in W_{0}^{{1,p}}\left( {{\Omega }} \right){\text{: }}\varphi \leqslant {v} \leqslant \psi ~\) a.e. in \({{\Omega }}\} ,\) where \({{\Omega }}\) is a nonempty bounded open set in \({{\mathbb{R}}^{n}}\) \(\left( {n \geqslant 2} \right)\), p > 1, and \(\varphi ,\psi {{:\;\Omega }} \to \bar {\mathbb{R}}\) are measurable functions. Under the assumptions that the operators \({{\mathcal{A}}_{s}}\) G-converge to an invertible operator \(\mathcal{A}{\text{: }}W_{0}^{{1,p}}\left( {{\Omega }} \right) \to {{W}^{{ - 1,p'}}}\left( {{\Omega }} \right)\), \({\text{int}}\left\{ {\varphi = \psi } \right\} \ne \varnothing ,\) \({\text{meas}}\left( {\partial \left\{ {\varphi = \psi } \right\} \cap {{\Omega }}} \right)\) = 0, and there exist functions \(\bar {\varphi },\bar {\psi } \in W_{0}^{{1,p}}\left( {{\Omega }} \right)\) such that \(\varphi \leqslant \overline {\varphi ~} \leqslant \bar {\psi } \leqslant \psi \) a.e. in \({{\Omega }}\) and \({\text{meas}}\left( {\left\{ {\varphi \ne \psi } \right\}{{\backslash }}\left\{ {\bar {\varphi } \ne \bar {\psi }} \right\}} \right) = 0,\) we establish that the solutions us of the variational inequalities converge weakly in \(W_{0}^{{1,p}}\left( {{\Omega }} \right)\) to the solution u of a similar variational inequality with the operator \(\mathcal{A}\) and the constraint set V. The fundamental difference of the considered case from the previously studied one in which \({\text{meas}}\left\{ {\varphi = \psi } \right\} = 0\) is that, in general, the functionals \({{\mathcal{A}}_{s}}{{u}_{s}}\) do not converge to \(\mathcal{A}u\) even weakly in \({{W}^{{ - 1,p'}}}\left( {{\Omega }} \right)\) and the energy integrals \(\langle {{\mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\rangle \) do not converge to \(\langle \mathcal{A}u,u\rangle \).

非线性变分不等式与正量程集合上的双边约束重合
Abstract We consider variational inequalities with invertible operators \({{\mathcal{A}}_{s}}{text{:}}~\,W_{0}^{{1,p}}}left( {{Omega }} \right) \to {{W}^{ - 1,p'}}}left( {{Omega }} \right),\)\(s在mathbb{N},\)中的发散形式和约束集\(V = \{v} \ in W_{0}^{1,p}}left( {{\Omega }} \right){\text{:}}varphi \leqslant {v} \leqslant \psi ~\) a.e..in \({{\Omega }}} ,\) where \({{\Omega }}\) is a nonempty bounded open set in \({{\mathbb{R}}^{n}}\) \(\left( {n \geqslant 2} \right)\), p > 1, and \(\varphi ,\psi {text{:Omega } \to bar\{mathbb{R}}\) 都是可测函数。假设算子 \({{mathcal{A}}_{s}}\) G-converge 到一个可逆算子 \(\mathcal{A}}\{text{:W_{0}^{{1,p}}}left( {{\Omega }} \right) \to {{W}^{ -1,p'}}}left( {{\Omega }} \right)\), (({ \text{int}}}left\{ {\varphi = \psi } \right\} \ne \emptyset 、\)({\text{meas}}左({\partial \left\{ {\varphi = \psi } \right} \cap {\Omega }} \right))= 0,并且存在函数(\bar {\varphi },\bar {\psi })。\in W_{0}^{1,p}}left( {{\Omega }} \right)\) such that \(\varphi \leqslant \overline {\varphi ~})\(leqslant) (bar {\psi }\a.e. in \({{\Omega }}\) and \({\text{meas}}left( {\left\{ {{varphi \ne\psi } })\right}({{backslash}}) (left) ({\bar {\varphi }\ne\bar {\psi }\Rright}\right) = 0,()我们确定变分不等式的解 us 在 \(W_{0}^{1,p}}\left( {{\Omega }} \right)\)中弱收敛于具有算子 \(\mathcal{A}\)和约束集 V 的类似变分不等式的解 u。所考虑的情况与之前研究的情况({\text{meas}}\left\{ {\varphi = \psi } \right\} = 0\ )的根本区别在于,一般来说,函数 \({{\mathcal{A}}_{s}}{{u}_{s}}\) 不会收敛到 \({{W}^{ - 1、p'}}}left({{\Omega}}\right)\),能量积分 \(angle {{mathcal{A}}_{s}}{{u}_{s}},{{u}_{s}}\rangle \)也不会收敛到 \(\langle \mathcal{A}}u,u\rangle \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信