On Undecidability of Subset Theories of Some Unars

Pub Date : 2024-04-18 DOI:10.1134/S1064562424701874
B. N. Karlov
{"title":"On Undecidability of Subset Theories of Some Unars","authors":"B. N. Karlov","doi":"10.1134/S1064562424701874","DOIUrl":null,"url":null,"abstract":"<p>This paper is dedicated to studying the algorithmic properties of unars with an injective function. We prove that the theory of every such unar admits quantifier elimination if the language is extended by a countable set of predicate symbols. Necessary and sufficient conditions are established for the quantifier elimination to be effective, and a criterion for decidability of theories of such unars is formulated. Using this criterion, we build a unar such that its theory is decidable, but the theory of the unar of its subsets is undecidable.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is dedicated to studying the algorithmic properties of unars with an injective function. We prove that the theory of every such unar admits quantifier elimination if the language is extended by a countable set of predicate symbols. Necessary and sufficient conditions are established for the quantifier elimination to be effective, and a criterion for decidability of theories of such unars is formulated. Using this criterion, we build a unar such that its theory is decidable, but the theory of the unar of its subsets is undecidable.

分享
查看原文
论某些乌纳尔子集理论的不可判定性
摘要 本文致力于研究具有注入函数的单变量的算法特性。我们证明,如果语言是由可数的谓词符号集扩展的,那么每一个这样的unar的理论都允许量词消去。我们建立了量词消去有效的必要条件和充分条件,并提出了此类 Unar 理论的可解性准则。利用这个标准,我们建立了一个unar,使得它的理论是可判定的,但它的子集的unar理论是不可判定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信