{"title":"Exact Estimates of Functions in Sobolev Spaces with Uniform Norm","authors":"D. D. Kazimirov, I. A. Sheipak","doi":"10.1134/S1064562424701862","DOIUrl":null,"url":null,"abstract":"<p>For functions from the Sobolev space <span>\\(\\overset{\\circ}{W}{} _{\\infty }^{n}[0;1]\\)</span> and an arbitrary point <span>\\(a \\in (0;1)\\)</span>, the best estimates are obtained in the inequality <span>\\({\\text{|}}f(a){\\text{|}} \\leqslant {{A}_{{n,0,\\infty }}}(a)\\, \\cdot \\,{\\text{||}}{{f}^{{(n)}}}{\\text{|}}{{{\\text{|}}}_{{{{L}_{\\infty }}[0;1]}}}\\)</span>. The connection of these estimates with the best approximations of splines of a special type by polynomials in <span>\\({{L}_{1}}[0;1]\\)</span> and with the Peano kernel is established. Exact constants of the embedding of the space <span>\\(\\overset{\\circ}{W}{}_{\\infty }^{n}[0;1]\\)</span> in <span>\\({{L}_{\\infty }}[0;1]\\)</span> are found.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For functions from the Sobolev space \(\overset{\circ}{W}{} _{\infty }^{n}[0;1]\) and an arbitrary point \(a \in (0;1)\), the best estimates are obtained in the inequality \({\text{|}}f(a){\text{|}} \leqslant {{A}_{{n,0,\infty }}}(a)\, \cdot \,{\text{||}}{{f}^{{(n)}}}{\text{|}}{{{\text{|}}}_{{{{L}_{\infty }}[0;1]}}}\). The connection of these estimates with the best approximations of splines of a special type by polynomials in \({{L}_{1}}[0;1]\) and with the Peano kernel is established. Exact constants of the embedding of the space \(\overset{\circ}{W}{}_{\infty }^{n}[0;1]\) in \({{L}_{\infty }}[0;1]\) are found.
Abstract-For functions from the Sobolev space \(\overset\{circ}{W}{\,}_{\infty }^{n}[0;1]\) and an arbitrary point \(a\in (0;1)\), the best estimates are obtained in the inequality \({\text{|}}f(a){\text{|}})leqslant {{A}_{n,0,\infty }}}(a)\, \cdot \,{\text{||}}{f}^{{(n)}}}{\text{|}}{{\text{|}}}{{{\text{|}}}_{{{{L}_\{infty }}}[0;1]}}}\).这些估计值与 \({{L}_{1}}[0;1]\) 中多项式的特殊类型花键的最佳近似值以及与 Peano 内核的联系已经建立。在 \({{L}_{\infty }}[0;1]\) 中找到了空间 \(\overset{\circ}{W}{\,}_{\infty }^{n}[0;1]\) 嵌入的精确常数。