Exact Estimates of Functions in Sobolev Spaces with Uniform Norm

Pub Date : 2024-04-18 DOI:10.1134/S1064562424701862
D. D. Kazimirov, I. A. Sheipak
{"title":"Exact Estimates of Functions in Sobolev Spaces with Uniform Norm","authors":"D. D. Kazimirov,&nbsp;I. A. Sheipak","doi":"10.1134/S1064562424701862","DOIUrl":null,"url":null,"abstract":"<p>For functions from the Sobolev space <span>\\(\\overset{\\circ}{W}{} _{\\infty }^{n}[0;1]\\)</span> and an arbitrary point <span>\\(a \\in (0;1)\\)</span>, the best estimates are obtained in the inequality <span>\\({\\text{|}}f(a){\\text{|}} \\leqslant {{A}_{{n,0,\\infty }}}(a)\\, \\cdot \\,{\\text{||}}{{f}^{{(n)}}}{\\text{|}}{{{\\text{|}}}_{{{{L}_{\\infty }}[0;1]}}}\\)</span>. The connection of these estimates with the best approximations of splines of a special type by polynomials in <span>\\({{L}_{1}}[0;1]\\)</span> and with the Peano kernel is established. Exact constants of the embedding of the space <span>\\(\\overset{\\circ}{W}{}_{\\infty }^{n}[0;1]\\)</span> in <span>\\({{L}_{\\infty }}[0;1]\\)</span> are found.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For functions from the Sobolev space \(\overset{\circ}{W}{} _{\infty }^{n}[0;1]\) and an arbitrary point \(a \in (0;1)\), the best estimates are obtained in the inequality \({\text{|}}f(a){\text{|}} \leqslant {{A}_{{n,0,\infty }}}(a)\, \cdot \,{\text{||}}{{f}^{{(n)}}}{\text{|}}{{{\text{|}}}_{{{{L}_{\infty }}[0;1]}}}\). The connection of these estimates with the best approximations of splines of a special type by polynomials in \({{L}_{1}}[0;1]\) and with the Peano kernel is established. Exact constants of the embedding of the space \(\overset{\circ}{W}{}_{\infty }^{n}[0;1]\) in \({{L}_{\infty }}[0;1]\) are found.

分享
查看原文
具有统一规范的索波列夫空间中函数的精确估算
Abstract-For functions from the Sobolev space \(\overset\{circ}{W}{\,}_{\infty }^{n}[0;1]\) and an arbitrary point \(a\in (0;1)\), the best estimates are obtained in the inequality \({\text{|}}f(a){\text{|}})leqslant {{A}_{n,0,\infty }}}(a)\, \cdot \,{\text{||}}{f}^{{(n)}}}{\text{|}}{{\text{|}}}{{{\text{|}}}_{{{{L}_\{infty }}}[0;1]}}}\).这些估计值与 \({{L}_{1}}[0;1]\) 中多项式的特殊类型花键的最佳近似值以及与 Peano 内核的联系已经建立。在 \({{L}_{\infty }}[0;1]\) 中找到了空间 \(\overset{\circ}{W}{\,}_{\infty }^{n}[0;1]\) 嵌入的精确常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信