Vincenzo Totaro, Andrea Gioia, George Kuczera, Vito Iacobellis
{"title":"Modelling multidecadal variability in flood frequency using the Two-Component Extreme Value distribution","authors":"Vincenzo Totaro, Andrea Gioia, George Kuczera, Vito Iacobellis","doi":"10.1007/s00477-024-02673-8","DOIUrl":null,"url":null,"abstract":"<p>The Two-Component Extreme Value (TCEV) distribution is traditionally known as the exact distribution of extremes arising from Poissonian occurrence of a mixture of two exponential exceedances. In some regions, flood frequency is affected by low-frequency (decadal) climate fluctuations resulting in wet and dry epochs. We extend the exact distribution of extremes approach to such regions to show that the TCEV arises as the distribution of annual maximum floods for Poissonian occurrences and (at least two) exponential exceedances. A case study using coastal basins in Queensland and New South Wales (Australia) affected by low-frequency climate variability, shows that the TCEV produces good fits to the marginal distribution over the entire range of observed values without the explicit need to resort to climate covariates and removal of potentially influential low values. Moreover, the TCEV reproduces the observed <i>dog-leg</i>, a key signature of different flood generation processes. A literature review shows that the assumptions underpinning the TCEV are conceptually consistent with available evidence on climate and flood mechanisms in these basins. We provide an extended domain of the TCEV distribution in the L-moment ratio diagram to account for the wider range of parameter values encountered in the case study and show that for all basins, L-skew and L-kurtosis fall within the extended domain of the TCEV.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"5 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02673-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The Two-Component Extreme Value (TCEV) distribution is traditionally known as the exact distribution of extremes arising from Poissonian occurrence of a mixture of two exponential exceedances. In some regions, flood frequency is affected by low-frequency (decadal) climate fluctuations resulting in wet and dry epochs. We extend the exact distribution of extremes approach to such regions to show that the TCEV arises as the distribution of annual maximum floods for Poissonian occurrences and (at least two) exponential exceedances. A case study using coastal basins in Queensland and New South Wales (Australia) affected by low-frequency climate variability, shows that the TCEV produces good fits to the marginal distribution over the entire range of observed values without the explicit need to resort to climate covariates and removal of potentially influential low values. Moreover, the TCEV reproduces the observed dog-leg, a key signature of different flood generation processes. A literature review shows that the assumptions underpinning the TCEV are conceptually consistent with available evidence on climate and flood mechanisms in these basins. We provide an extended domain of the TCEV distribution in the L-moment ratio diagram to account for the wider range of parameter values encountered in the case study and show that for all basins, L-skew and L-kurtosis fall within the extended domain of the TCEV.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.