Practical applications of machine-learned flows on gauge fields

Ryan Abbott, Michael S. Albergo, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Fernando Romero-López, Phiala E. Shanahan, Julian M. Urban
{"title":"Practical applications of machine-learned flows on gauge fields","authors":"Ryan Abbott, Michael S. Albergo, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Fernando Romero-López, Phiala E. Shanahan, Julian M. Urban","doi":"arxiv-2404.11674","DOIUrl":null,"url":null,"abstract":"Normalizing flows are machine-learned maps between different lattice theories\nwhich can be used as components in exact sampling and inference schemes.\nOngoing work yields increasingly expressive flows on gauge fields, but it\nremains an open question how flows can improve lattice QCD at state-of-the-art\nscales. We discuss and demonstrate two applications of flows in replica\nexchange (parallel tempering) sampling, aimed at improving topological mixing,\nwhich are viable with iterative improvements upon presently available flows.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.11674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Normalizing flows are machine-learned maps between different lattice theories which can be used as components in exact sampling and inference schemes. Ongoing work yields increasingly expressive flows on gauge fields, but it remains an open question how flows can improve lattice QCD at state-of-the-art scales. We discuss and demonstrate two applications of flows in replica exchange (parallel tempering) sampling, aimed at improving topological mixing, which are viable with iterative improvements upon presently available flows.
机器学习流在规整场上的实际应用
归一化流是不同晶格理论之间的机器学习映射,可以作为精确采样和推理方案的组成部分。正在进行的工作产生了越来越有表现力的规规场流,但流如何能在最先进的尺度上改进晶格QCD,仍然是一个悬而未决的问题。我们讨论并演示了流动在复制交换(并行回火)采样中的两个应用,目的是改善拓扑混合,在现有流动的基础上进行迭代改进是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信