K. K. Jasmi, T. Anto Johny, V. S. Siril, K. N. Madhusoodanan
{"title":"Influence of lithium on Cu-doped ZnO thin films fabricated via sol-gel spin coating technique for improved NO2 gas sensing applications","authors":"K. K. Jasmi, T. Anto Johny, V. S. Siril, K. N. Madhusoodanan","doi":"10.1007/s10832-024-00350-4","DOIUrl":null,"url":null,"abstract":"<p>We demonstrate the influence of lithium on copper-doped ZnO-based thin films for improved NO<sub>2</sub> gas sensing applications fabricated via the sol-gel spin coating technique. Structure studies confirmed hexagonal wurtzite structure and morphological analysis showed evenly dispersed, agglomerated spherical particles with an average grain size ranging from 25.94 to 30.79 nm. Lithium-doped Cu-ZnO with more surface oxygen vacancies and a higher carrier density demonstrated outstanding NO<sub>2</sub> gas sensitivity, excellent repeatability, excellent stability, and high selectivity at 210 °C. A possible gas-sensing mechanism is also discussed and correlated with structural, morphological, spectral, and electrical parameters.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10832-024-00350-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate the influence of lithium on copper-doped ZnO-based thin films for improved NO2 gas sensing applications fabricated via the sol-gel spin coating technique. Structure studies confirmed hexagonal wurtzite structure and morphological analysis showed evenly dispersed, agglomerated spherical particles with an average grain size ranging from 25.94 to 30.79 nm. Lithium-doped Cu-ZnO with more surface oxygen vacancies and a higher carrier density demonstrated outstanding NO2 gas sensitivity, excellent repeatability, excellent stability, and high selectivity at 210 °C. A possible gas-sensing mechanism is also discussed and correlated with structural, morphological, spectral, and electrical parameters.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.