Vishal Patel, Shengzhen Tao, Xiangzhi Zhou, Chen Lin, Erin Westerhold, Sanjeet Grewal, Erik H. Middlebrooks
{"title":"Real-Time Optimal Synthetic Inversion Recovery Image Selection (RT-OSIRIS) for Deep Brain Stimulation Targeting","authors":"Vishal Patel, Shengzhen Tao, Xiangzhi Zhou, Chen Lin, Erin Westerhold, Sanjeet Grewal, Erik H. Middlebrooks","doi":"10.1007/s10278-024-01117-7","DOIUrl":null,"url":null,"abstract":"<p>Deep brain stimulation (DBS) is a method of electrical neuromodulation used to treat a variety of neuropsychiatric conditions including essential tremor, Parkinson’s disease, epilepsy, and obsessive–compulsive disorder. The procedure requires precise placement of electrodes such that the electrical contacts lie within or in close proximity to specific target nuclei and tracts located deep within the brain. DBS electrode trajectory planning has become increasingly dependent on direct targeting with the need for precise visualization of targets. MRI is the primary tool for direct visualization, and this has led to the development of numerous sequences to aid in visualization of different targets. Synthetic inversion recovery images, specified by an inversion time parameter, can be generated from T<sub>1</sub> relaxation maps, and this represents a promising method for modifying the contrast of deep brain structures to accentuate target areas using a single acquisition. However, there is currently no accessible method for dynamically adjusting the inversion time parameter and observing the effects in real-time in order to choose the optimal value. In this work, we examine three different approaches to implementing an application for real-time optimal synthetic inversion recovery image selection and evaluate them based on their ability to display continually-updated synthetic inversion recovery images as the user modifies the inversion time parameter. These methods include continuously computing the inversion recovery equation at each voxel in the image volume, limiting the computation only to the voxels of the orthogonal slices currently displayed on screen, or using a series of lookup tables with precomputed solutions to the inversion recovery equation. We find the latter implementation provides for the quickest display updates both when modifying the inversion time and when scrolling through the image. We introduce a publicly available cross-platform application built around this conclusion. We also briefly discuss other details of the implementations and considerations for extensions to other use cases.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01117-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Deep brain stimulation (DBS) is a method of electrical neuromodulation used to treat a variety of neuropsychiatric conditions including essential tremor, Parkinson’s disease, epilepsy, and obsessive–compulsive disorder. The procedure requires precise placement of electrodes such that the electrical contacts lie within or in close proximity to specific target nuclei and tracts located deep within the brain. DBS electrode trajectory planning has become increasingly dependent on direct targeting with the need for precise visualization of targets. MRI is the primary tool for direct visualization, and this has led to the development of numerous sequences to aid in visualization of different targets. Synthetic inversion recovery images, specified by an inversion time parameter, can be generated from T1 relaxation maps, and this represents a promising method for modifying the contrast of deep brain structures to accentuate target areas using a single acquisition. However, there is currently no accessible method for dynamically adjusting the inversion time parameter and observing the effects in real-time in order to choose the optimal value. In this work, we examine three different approaches to implementing an application for real-time optimal synthetic inversion recovery image selection and evaluate them based on their ability to display continually-updated synthetic inversion recovery images as the user modifies the inversion time parameter. These methods include continuously computing the inversion recovery equation at each voxel in the image volume, limiting the computation only to the voxels of the orthogonal slices currently displayed on screen, or using a series of lookup tables with precomputed solutions to the inversion recovery equation. We find the latter implementation provides for the quickest display updates both when modifying the inversion time and when scrolling through the image. We introduce a publicly available cross-platform application built around this conclusion. We also briefly discuss other details of the implementations and considerations for extensions to other use cases.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.