Fabian Dellefant, Lina Seybold, Claudia A. Trepmann, Stuart A. Gilder, Iuliia V. Sleptsova, Stefan Hölzl, Melanie Kaliwoda
{"title":"Emplacement of shocked basement clasts during crater excavation in the Ries impact structure","authors":"Fabian Dellefant, Lina Seybold, Claudia A. Trepmann, Stuart A. Gilder, Iuliia V. Sleptsova, Stefan Hölzl, Melanie Kaliwoda","doi":"10.1007/s00531-024-02403-z","DOIUrl":null,"url":null,"abstract":"<p>In the Aumühle quarry of the Ries impact structure, moderately shocked clasts from the Variscan basement occur sandwiched between overlying suevite and components derived from the Mesozoic sedimentary cover of the underlying Bunte Breccia without distinct shock effects. We analyzed the clasts by optical microscopy, scanning electron microscopy (SEM/EDS/EBSD), and Raman spectroscopy to unravel their emplacement relation to the overlying suevite and the sediment-rock clasts of the Bunte Breccia. Clasts sizes range up to few decimeters and are embedded in a fine-grained lithic matrix; no impact-melt fragments are observed. Amphibolite clasts contain maskelynite with few lamellar remnants of feldspar, indicating shock pressures of 28–34 GPa. Amphiboles have cleavage fractures and (<span>\\(\\overline{1}\\)</span>01) mechanical twins suggesting differential stresses > 400 MPa. Felsic gneiss components have optically isotropic SiO<sub>2</sub> indicative of shock pressures ≈35 GPa. Metagranite cataclasite clasts contain shocked calcite aggregates and quartz with a high density of fine rhombohedral planar deformation features indicating shock pressures ≈20 GPa. The moderately shocked basement clasts originate from deeper levels of the transient cavity and lower radial distance to the center of the structure compared to the sediment-rock clasts. Both were ballistically ejected during crater excavation. In accordance with palaeo- and rock magnetic data, they were mixed during turbulent deposition at the top of the Bunte Breccia before the emplacement of suevite. The high amount of basement clasts below suevite and on top of the underlying Bunte Breccia is consistent with the commonly reported inverse stratigraphy in the Ries impact structure.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":13845,"journal":{"name":"International Journal of Earth Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00531-024-02403-z","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the Aumühle quarry of the Ries impact structure, moderately shocked clasts from the Variscan basement occur sandwiched between overlying suevite and components derived from the Mesozoic sedimentary cover of the underlying Bunte Breccia without distinct shock effects. We analyzed the clasts by optical microscopy, scanning electron microscopy (SEM/EDS/EBSD), and Raman spectroscopy to unravel their emplacement relation to the overlying suevite and the sediment-rock clasts of the Bunte Breccia. Clasts sizes range up to few decimeters and are embedded in a fine-grained lithic matrix; no impact-melt fragments are observed. Amphibolite clasts contain maskelynite with few lamellar remnants of feldspar, indicating shock pressures of 28–34 GPa. Amphiboles have cleavage fractures and (\(\overline{1}\)01) mechanical twins suggesting differential stresses > 400 MPa. Felsic gneiss components have optically isotropic SiO2 indicative of shock pressures ≈35 GPa. Metagranite cataclasite clasts contain shocked calcite aggregates and quartz with a high density of fine rhombohedral planar deformation features indicating shock pressures ≈20 GPa. The moderately shocked basement clasts originate from deeper levels of the transient cavity and lower radial distance to the center of the structure compared to the sediment-rock clasts. Both were ballistically ejected during crater excavation. In accordance with palaeo- and rock magnetic data, they were mixed during turbulent deposition at the top of the Bunte Breccia before the emplacement of suevite. The high amount of basement clasts below suevite and on top of the underlying Bunte Breccia is consistent with the commonly reported inverse stratigraphy in the Ries impact structure.
期刊介绍:
The International Journal of Earth Sciences publishes process-oriented original and review papers on the history of the earth, including
- Dynamics of the lithosphere
- Tectonics and volcanology
- Sedimentology
- Evolution of life
- Marine and continental ecosystems
- Global dynamics of physicochemical cycles
- Mineral deposits and hydrocarbons
- Surface processes.