Tensorlab+: A Case Study on Reproducibility in Tensor Research

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Stijn Hendrikx, Raphaël Widdershoven, Nico Vervliet, Lieven De Lathauwer
{"title":"Tensorlab+: A Case Study on Reproducibility in Tensor Research","authors":"Stijn Hendrikx, Raphaël Widdershoven, Nico Vervliet, Lieven De Lathauwer","doi":"10.1109/mcse.2023.3340434","DOIUrl":null,"url":null,"abstract":"Tensor methods emerge as an important class of basic techniques, generalizing matrix methods to multiway data and models. We have recently released Tensorlab+, which is a downloadable archive of code and data that allows peers to reproduce the experiments reported in our publications on tensor decompositions and applications. We briefly discuss the basic tensor tools and give an introduction to the contents of Tensorlab+. We elaborate on the steps that were taken to ensure the reproducibility of the experiments and the quality of the code.","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"17 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in Science & Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/mcse.2023.3340434","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor methods emerge as an important class of basic techniques, generalizing matrix methods to multiway data and models. We have recently released Tensorlab+, which is a downloadable archive of code and data that allows peers to reproduce the experiments reported in our publications on tensor decompositions and applications. We briefly discuss the basic tensor tools and give an introduction to the contents of Tensorlab+. We elaborate on the steps that were taken to ensure the reproducibility of the experiments and the quality of the code.
Tensorlab+:张量研究可重复性案例研究
张量方法是一类重要的基本技术,它将矩阵方法推广到多向数据和模型中。我们最近发布了 Tensorlab+,这是一个可下载的代码和数据档案库,允许同行重现我们在张量分解和应用方面的出版物中报道的实验。我们将简要讨论基本的张量工具,并介绍 Tensorlab+ 的内容。我们将详细介绍为确保实验的可重复性和代码质量所采取的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computing in Science & Engineering
Computing in Science & Engineering 工程技术-计算机:跨学科应用
CiteScore
4.20
自引率
0.00%
发文量
77
审稿时长
6-12 weeks
期刊介绍: Physics, medicine, astronomy -- these and other hard sciences share a common need for efficient algorithms, system software, and computer architecture to address large computational problems. And yet, useful advances in computational techniques that could benefit many researchers are rarely shared. To meet that need, Computing in Science & Engineering presents scientific and computational contributions in a clear and accessible format. The computational and data-centric problems faced by scientists and engineers transcend disciplines. There is a need to share knowledge of algorithms, software, and architectures, and to transmit lessons-learned to a broad scientific audience. CiSE is a cross-disciplinary, international publication that meets this need by presenting contributions of high interest and educational value from a variety of fields, including—but not limited to—physics, biology, chemistry, and astronomy. CiSE emphasizes innovative applications in advanced computing, simulation, and analytics, among other cutting-edge techniques. CiSE publishes peer-reviewed research articles, and also runs departments spanning news and analyses, topical reviews, tutorials, case studies, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信