Scattering threshold for the focusing energy-critical generalized Hartree equation

IF 1 4区 数学 Q1 MATHEMATICS
Saleh Almuthaybiri, Congming Peng, Tarek Saanouni
{"title":"Scattering threshold for the focusing energy-critical generalized Hartree equation","authors":"Saleh Almuthaybiri, Congming Peng, Tarek Saanouni","doi":"10.1515/math-2024-0002","DOIUrl":null,"url":null,"abstract":"This work investigates the asymptotic behavior of energy solutions to the focusing nonlinear Schrödinger equation of Choquard type <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0002_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mi>i</m:mi> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>*</m:mo> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mspace width=\"1.0em\" /> <m:mi>p</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mo>+</m:mo> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:mfrac> <m:mo>,</m:mo> <m:mspace width=\"1.0em\" /> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> <m:mo>.</m:mo> </m:math> <jats:tex-math>i{\\partial }_{t}u+\\Delta u+{| u| }^{p-2}\\left({I}_{\\alpha }* {| u| }^{p})u=0,\\hspace{1.0em}p=1+\\frac{2+\\alpha }{N-2},\\hspace{1.0em}N\\ge 3.</jats:tex-math> </jats:alternatives> </jats:disp-formula> Indeed, in the energy-critical spherically symmetric regime, one proves a global existence and scattering versus finite time blow-up dichotomy. Precisely, if the data have an energy less than the ground state one, two cases are possible. If the kinetic energy of the radial data is less than the ground state one, then the solution is global and scatters. Otherwise, if the data have a finite variance or is spherically symmetric and have a finite mass, then the solution is nonglobal. The main difficulty is to deal with the nonlocal source term. The argument is the concentration-compactness-rigidity method introduced by Kenig and Merle (<jats:italic>Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case</jats:italic>, Invent. Math. 166 (2006), no. 3, 645–675). This note naturally complements the work by Saanouni (<jats:italic>Scattering theory for a class of defocusing energy-critical Choquard equations</jats:italic>, J. Evol. Equ. 21 (2021), 1551–1571), where the scattering of the defocusing energy-critical generalized Hartree equation was obtained.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"110 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the asymptotic behavior of energy solutions to the focusing nonlinear Schrödinger equation of Choquard type i t u + Δ u + u p 2 ( I α * u p ) u = 0 , p = 1 + 2 + α N 2 , N 3 . i{\partial }_{t}u+\Delta u+{| u| }^{p-2}\left({I}_{\alpha }* {| u| }^{p})u=0,\hspace{1.0em}p=1+\frac{2+\alpha }{N-2},\hspace{1.0em}N\ge 3. Indeed, in the energy-critical spherically symmetric regime, one proves a global existence and scattering versus finite time blow-up dichotomy. Precisely, if the data have an energy less than the ground state one, two cases are possible. If the kinetic energy of the radial data is less than the ground state one, then the solution is global and scatters. Otherwise, if the data have a finite variance or is spherically symmetric and have a finite mass, then the solution is nonglobal. The main difficulty is to deal with the nonlocal source term. The argument is the concentration-compactness-rigidity method introduced by Kenig and Merle (Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), no. 3, 645–675). This note naturally complements the work by Saanouni (Scattering theory for a class of defocusing energy-critical Choquard equations, J. Evol. Equ. 21 (2021), 1551–1571), where the scattering of the defocusing energy-critical generalized Hartree equation was obtained.
聚焦能量临界广义哈特里方程的散射阈值
这项工作研究了乔夸尔型聚焦非线性薛定谔方程能量解的渐近行为 i ∂ t u + Δ u + ∣ u ∣ p - 2 ( I α * ∣ u ∣ p ) u = 0 , p = 1 + 2 + α N - 2 , N ≥ 3 。 i{partial }_{t}u+\Delta u+{| u| }^{p-2}\left({I}_{\alpha }* {| u| }^{p})u=0,\hspace{1.0em}p=1+\frac{2+\alpha }{N-2},\hspace{1.0em}N\ge 3. 事实上,在能量临界球对称体系中,我们可以证明全局存在和散射与有限时间炸毁的二分法。确切地说,如果数据的能量小于基态能量,则可能出现两种情况。如果径向数据的动能小于基态动能,那么解就是全局的,并且会发生散射。否则,如果数据具有有限方差或球面对称且具有有限质量,则解为非全局解。主要困难在于如何处理非局部源项。其论据是 Kenig 和 Merle 引入的集中-紧凑-刚性方法(Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent.Math.166 (2006), no.3, 645-675).本注释自然补充了 Saanouni 的工作(Scattering theory for a class of defocusing energy-critical Choquard equations, J. Evol. Equ.21 (2021), 1551-1571) 的工作的补充,在该论文中,我们得到了离焦能量临界广义哈特里方程的散射理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信