On Chow Rings of Quiver Moduli

Pub Date : 2024-04-19 DOI:10.1093/imrn/rnad306
Pieter Belmans, Hans Franzen
{"title":"On Chow Rings of Quiver Moduli","authors":"Pieter Belmans, Hans Franzen","doi":"10.1093/imrn/rnad306","DOIUrl":null,"url":null,"abstract":"We describe the point class and Todd class in the Chow ring of a moduli space of quiver representations, building on a result of Ellingsrud–Strømme. This, together with the presentation of the Chow ring by the second author, makes it possible to compute integrals on quiver moduli. To do so, we construct a canonical morphism of universal representations in great generality, and along the way point out its relation to the Kodaira–Spencer morphism. We illustrate the results by computing some invariants of some “small” Kronecker moduli spaces. We also prove that the first non-trivial (6-dimensional) Kronecker moduli space is isomorphic to the zero locus of a general section of $\\mathcal{Q}^{\\vee }(1)$ on $\\textrm{Gr}(2,8)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnad306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe the point class and Todd class in the Chow ring of a moduli space of quiver representations, building on a result of Ellingsrud–Strømme. This, together with the presentation of the Chow ring by the second author, makes it possible to compute integrals on quiver moduli. To do so, we construct a canonical morphism of universal representations in great generality, and along the way point out its relation to the Kodaira–Spencer morphism. We illustrate the results by computing some invariants of some “small” Kronecker moduli spaces. We also prove that the first non-trivial (6-dimensional) Kronecker moduli space is isomorphic to the zero locus of a general section of $\mathcal{Q}^{\vee }(1)$ on $\textrm{Gr}(2,8)$.
分享
查看原文
论震颤模的周环
我们以埃林斯鲁德-斯特罗姆(Ellingsrud-Strømme)的一个结果为基础,描述了四元组表示的模空间的周环中的点类和托德类。这与第二位作者对周环的介绍一起,使得计算quiver模空间上的积分成为可能。为此,我们构建了一个通用表示的典型态,并指出了它与小平-斯宾塞态的关系。我们通过计算一些 "小 "克朗内克模空间的一些不变量来说明这些结果。我们还证明了第一个非三维(6 维)克朗内克模空间与 $\mathcal{Q}^{\vee }(1)$ 上 $\textrm{Gr}(2,8)$ 的一般截面的零点同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信