Saline paleo-water mass transfer induced by piston flow in the continental alluvial aquifer of the Oltrepò Pavese plain (Po Plain, northern Italy)

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Giorgio Pilla, Patrizio Torrese
{"title":"Saline paleo-water mass transfer induced by piston flow in the continental alluvial aquifer of the Oltrepò Pavese plain (Po Plain, northern Italy)","authors":"Giorgio Pilla, Patrizio Torrese","doi":"10.1007/s10040-024-02790-2","DOIUrl":null,"url":null,"abstract":"<p>Hydrochemical and geophysical methods were used to assess saline paleo-water mass transfer induced by piston flow in the alluvial aquifer of the Oltrepò Pavese plain (northern Italy). The surface aquifer shows salinity contamination from a Tertiary substrate of marine origin, due to mixing of the shallower fresh groundwater with the Po Plain’s deep brines. The study also used continuous monitoring of groundwater electrical conductivity, temperature and piezometric levels. Well logging and geophysical imaging, conducted at different times, revealed that the contamination varies over time, and that the water salinity and the depth of the transition zone (between the surface freshwaters and the deep saline waters) are subject to modifications. This is due to a pressure transfer—and, subsequently, mass transfer−from the groundwater circuits of the nearby Apennine mountains. It suggests that a hydraulic connection exists between the fractured Apennine water circuits and the deeper Mio-Pliocene and Tertiary saline-water circuits found below the plain’s alluvial aquifer. Coinciding with significant recharge episodes that affect Apennine water circuits (prolonged rainfall and snow melt at mid-high altitudes), there is a pressure transfer transmitted along the water circuits in which saline water resides, providing an impulse to rise along the discontinuities and reach the alluvial aquifer. The conceptual model is supported by evidence that wells constructed in correspondence to hydraulically active tectonic discontinuities are affected by the arrival of saline waters with variable delays, while wells sited in sectors not affected by tectonic discontinuities are diluted by ‘fresh’ waters connected to alluvial aquifer recharge.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogeology Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10040-024-02790-2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrochemical and geophysical methods were used to assess saline paleo-water mass transfer induced by piston flow in the alluvial aquifer of the Oltrepò Pavese plain (northern Italy). The surface aquifer shows salinity contamination from a Tertiary substrate of marine origin, due to mixing of the shallower fresh groundwater with the Po Plain’s deep brines. The study also used continuous monitoring of groundwater electrical conductivity, temperature and piezometric levels. Well logging and geophysical imaging, conducted at different times, revealed that the contamination varies over time, and that the water salinity and the depth of the transition zone (between the surface freshwaters and the deep saline waters) are subject to modifications. This is due to a pressure transfer—and, subsequently, mass transfer−from the groundwater circuits of the nearby Apennine mountains. It suggests that a hydraulic connection exists between the fractured Apennine water circuits and the deeper Mio-Pliocene and Tertiary saline-water circuits found below the plain’s alluvial aquifer. Coinciding with significant recharge episodes that affect Apennine water circuits (prolonged rainfall and snow melt at mid-high altitudes), there is a pressure transfer transmitted along the water circuits in which saline water resides, providing an impulse to rise along the discontinuities and reach the alluvial aquifer. The conceptual model is supported by evidence that wells constructed in correspondence to hydraulically active tectonic discontinuities are affected by the arrival of saline waters with variable delays, while wells sited in sectors not affected by tectonic discontinuities are diluted by ‘fresh’ waters connected to alluvial aquifer recharge.

Abstract Image

意大利北部波河平原 Oltrepò Pavese 平原大陆冲积含水层活塞流引起的古盐水质量转移
采用水化学和地球物理方法评估了意大利北部奥尔特雷波-帕维斯平原冲积含水层活塞流引起的古盐水质量转移。由于较浅的淡水地下水与波河平原的深层盐水混合,地表含水层受到来自第三纪海洋基质的盐度污染。研究还对地下水的电导率、温度和压强进行了连续监测。在不同时间进行的测井和地球物理成像显示,污染情况随时间而变化,水的盐度和过渡带(地表淡水和深层盐水之间)的深度也会发生变化。这是由于附近亚平宁山脉地下水回路的压力转移,以及随后的质量转移造成的。这表明,亚平宁断裂水循环与平原冲积含水层下面的中新世和第三纪深层盐水循环之间存在着水力联系。在影响亚平宁水循环的重大补给事件(中高海拔地区的长期降雨和融雪)发生时,盐水所在的水循环会产生压力传递,推动盐水沿着不连续面上升,到达冲积含水层。有证据支持这一概念模型,即与水力活跃的构造不连续面相对应的水井受到盐水到达的影响,其延迟时间不尽相同,而位于不受构造不连续面影响的地段的水井则受到与冲积含水层补给相连的 "淡水 "的稀释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrogeology Journal
Hydrogeology Journal 地学-地球科学综合
CiteScore
5.40
自引率
7.10%
发文量
128
审稿时长
6 months
期刊介绍: Hydrogeology Journal was founded in 1992 to foster understanding of hydrogeology; to describe worldwide progress in hydrogeology; and to provide an accessible forum for scientists, researchers, engineers, and practitioners in developing and industrialized countries. Since then, the journal has earned a large worldwide readership. Its peer-reviewed research articles integrate subsurface hydrology and geology with supporting disciplines: geochemistry, geophysics, geomorphology, geobiology, surface-water hydrology, tectonics, numerical modeling, economics, and sociology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信