Enhancing the electrochemical performance of nickel cobalt sulfide nanostructures via molybdenum doping for supercapacitor applications

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Muhammad Arshad Kamran , Muhammad Rashid , Sami Ullah , Thamer Alharbi
{"title":"Enhancing the electrochemical performance of nickel cobalt sulfide nanostructures via molybdenum doping for supercapacitor applications","authors":"Muhammad Arshad Kamran ,&nbsp;Muhammad Rashid ,&nbsp;Sami Ullah ,&nbsp;Thamer Alharbi","doi":"10.1016/j.physe.2024.115968","DOIUrl":null,"url":null,"abstract":"<div><p>The electrode materials, which exhibit improved electrochemical characteristics, have broad applications in high-capacity and high-power-density storage devices like supercapacitors. This research investigates the synthesis, electrochemical performance, and characterization of novel nanostructures comprised of molybdenum-doped nickel cobalt sulfide (Mo-NiCo<sub>2</sub>S<sub>4</sub> NSs) as active electrode materials. For the first time, Mo-NiCo<sub>2</sub>S<sub>4</sub> nanostructures synthesized via a one-step hydrothermal method demonstrate high efficiency as supercapacitor materials, showcasing their potential for supercapacitor applications. To examine the physical and chemical characteristics of the synthesized Mo-NiCo<sub>2</sub>S<sub>4</sub> nanostructures, X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analyses were employed. Furthermore, the electrochemical efficacy of novel electrode materials was investigated using three electrodes configuration, aiming for superior performance in supercapacitor applications. Moreover, the collaborative effect of Mo-NiCo<sub>2</sub>S<sub>4</sub> NSs was examined via cyclic voltammogram (CV), galvanostatic charge-discharge (GCD) curves, and electrochemical impedance spectroscopy (EIS). The cotton-like modified morphology observed via SEM revealed an increase in redox-active sites, thereby enhancing the energy storage capacity of the electrode material. The optimized sample (5 % Mo-NiCo<sub>2</sub>S<sub>4</sub> NSs) demonstrated a specific capacitance of 1740 F g<sup>−1</sup> at a current density of 4 A g<sup>−1</sup>. Additionally, the optimized electrode displayed notable energy density (60.4 WhKg<sup>−1</sup>) and power density (500 Wkg<sup>-1</sup>). The modified cotton-like morphology of the optimized sample exhibited superior electrochemical performance compared to the NiCo<sub>2</sub>S<sub>4</sub> NSs. This study suggests that Mo-NiCo<sub>2</sub>S<sub>4</sub> nanostructures hold great promise as electrode materials for future supercapacitors in energy storage systems.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724000729","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrode materials, which exhibit improved electrochemical characteristics, have broad applications in high-capacity and high-power-density storage devices like supercapacitors. This research investigates the synthesis, electrochemical performance, and characterization of novel nanostructures comprised of molybdenum-doped nickel cobalt sulfide (Mo-NiCo2S4 NSs) as active electrode materials. For the first time, Mo-NiCo2S4 nanostructures synthesized via a one-step hydrothermal method demonstrate high efficiency as supercapacitor materials, showcasing their potential for supercapacitor applications. To examine the physical and chemical characteristics of the synthesized Mo-NiCo2S4 nanostructures, X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analyses were employed. Furthermore, the electrochemical efficacy of novel electrode materials was investigated using three electrodes configuration, aiming for superior performance in supercapacitor applications. Moreover, the collaborative effect of Mo-NiCo2S4 NSs was examined via cyclic voltammogram (CV), galvanostatic charge-discharge (GCD) curves, and electrochemical impedance spectroscopy (EIS). The cotton-like modified morphology observed via SEM revealed an increase in redox-active sites, thereby enhancing the energy storage capacity of the electrode material. The optimized sample (5 % Mo-NiCo2S4 NSs) demonstrated a specific capacitance of 1740 F g−1 at a current density of 4 A g−1. Additionally, the optimized electrode displayed notable energy density (60.4 WhKg−1) and power density (500 Wkg-1). The modified cotton-like morphology of the optimized sample exhibited superior electrochemical performance compared to the NiCo2S4 NSs. This study suggests that Mo-NiCo2S4 nanostructures hold great promise as electrode materials for future supercapacitors in energy storage systems.

通过掺杂钼提高硫化镍钴纳米结构的电化学性能,促进超级电容器的应用
这种电极材料具有更好的电化学特性,在超级电容器等高容量、高功率密度存储设备中有着广泛的应用。本研究调查了作为活性电极材料的掺钼硫化镍钴(Mo-NiCo2S4 NSs)新型纳米结构的合成、电化学性能和表征。通过一步水热法合成的 Mo-NiCo2S4 纳米结构首次显示出作为超级电容器材料的高效性,展示了其在超级电容器应用中的潜力。为了研究合成的 Mo-NiCo2S4 纳米结构的物理和化学特性,采用了 X 射线衍射(XRD)、傅立叶变换红外(FT-IR)、扫描电子显微镜(SEM)和能量色散 X 射线光谱(EDX)分析。此外,还利用三电极配置研究了新型电极材料的电化学功效,旨在实现超级电容器应用中的卓越性能。此外,还通过循环伏安图(CV)、电静态充放电(GCD)曲线和电化学阻抗谱(EIS)研究了 Mo-NiCo2S4 NSs 的协同效应。通过扫描电子显微镜观察到的棉花状修饰形貌显示出氧化还原活性位点的增加,从而提高了电极材料的储能能力。优化样品(5% Mo-NiCo2S4 NSs)在电流密度为 4 A g-1 时的比电容为 1740 F g-1。此外,优化电极还显示出显著的能量密度(60.4 WhKg-1)和功率密度(500 Wkg-1)。与 NiCo2S4 NSs 相比,优化样品的改性棉花状形态表现出更优越的电化学性能。这项研究表明,Mo-NiCo2S4 纳米结构有望成为未来储能系统中超级电容器的电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信