Domain Adaptation With Contrastive Learning for Object Detection in Satellite Imagery

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Debojyoti Biswas;Jelena Tešić
{"title":"Domain Adaptation With Contrastive Learning for Object Detection in Satellite Imagery","authors":"Debojyoti Biswas;Jelena Tešić","doi":"10.1109/TGRS.2024.3391621","DOIUrl":null,"url":null,"abstract":"State-of-the-art (SOTA) object detection methods applied to satellite and drone imagery largely fail to identify cross-domain small and dense objects. The high content variability in the overhead imagery is due to different sensors, terrestrial regions, lighting conditions, and the image acquisition time of the day. Moreover, the number and size of objects in aerial imagery are very different than in the consumer data. We propose a small object detection pipeline that improves the feature extraction process by spatial pyramid pooling, cross-stage partial networks, and heatmap-based region proposal networks (RPNs). Next, we propose the instance-aware image difficulty score (DS) that adapts the overall focal loss to improve object localization and identification. Finally, we add the two progressive domain adaptation (DA) blocks using contrastive learning in the pipeline. The blocks align the local and global features extracted from the customized CSP Darknet backbone, as different levels of feature alignment alleviate the degradation of object identification in previously unseen datasets. We create a first-ever DA benchmark using contrastive learning for the object detection task in highly imbalanced satellite datasets with significant domain gaps and dominant small objects from existing satellite benchmarks—the proposed method results in up to a 7.4% and 4.6% increase in mean average precision (mAP) over the best SOTA method for the DOTA and NWPU-VHR10 datasets, respectively.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"62 ","pages":"1-15"},"PeriodicalIF":8.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505321","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10505321/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

State-of-the-art (SOTA) object detection methods applied to satellite and drone imagery largely fail to identify cross-domain small and dense objects. The high content variability in the overhead imagery is due to different sensors, terrestrial regions, lighting conditions, and the image acquisition time of the day. Moreover, the number and size of objects in aerial imagery are very different than in the consumer data. We propose a small object detection pipeline that improves the feature extraction process by spatial pyramid pooling, cross-stage partial networks, and heatmap-based region proposal networks (RPNs). Next, we propose the instance-aware image difficulty score (DS) that adapts the overall focal loss to improve object localization and identification. Finally, we add the two progressive domain adaptation (DA) blocks using contrastive learning in the pipeline. The blocks align the local and global features extracted from the customized CSP Darknet backbone, as different levels of feature alignment alleviate the degradation of object identification in previously unseen datasets. We create a first-ever DA benchmark using contrastive learning for the object detection task in highly imbalanced satellite datasets with significant domain gaps and dominant small objects from existing satellite benchmarks—the proposed method results in up to a 7.4% and 4.6% increase in mean average precision (mAP) over the best SOTA method for the DOTA and NWPU-VHR10 datasets, respectively.
利用对比学习进行领域适应以探测卫星图像中的物体
应用于卫星和无人机图像的最先进(SOTA)物体检测方法在很大程度上无法识别跨域的小型和密集物体。由于传感器、地面区域、光照条件和一天中的图像采集时间不同,高空图像的内容变化很大。此外,航空图像中物体的数量和大小与消费者数据中的也有很大不同。我们提出了一个小物体检测管道,通过空间金字塔池、跨阶段部分网络和基于热图的区域建议网络(RPN)来改进特征提取过程。接下来,我们提出了实例感知图像难度评分(DS),该评分可调整整体焦点损失,从而改进物体定位和识别。最后,我们在管道中添加了两个使用对比学习的渐进式域适应(DA)模块。这两个区块将从定制的 CSP Darknet 主干网中提取的局部和全局特征进行对齐,因为不同程度的特征对齐可以减轻以前未见过的数据集中的物体识别能力下降问题。在高度不平衡的卫星数据集中,我们首次利用对比学习创建了一个DA基准,在现有卫星基准中,这些数据集具有显著的领域差距和主要的小目标,而在DOTA和NWPU-VHR10数据集中,所提出的方法比最佳SOTA方法的平均精度(mAP)分别提高了7.4%和4.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信