Broadband mid-infrared thermal emission with large degree of circular polarization enabled by symmetry-broken metasurfaces

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qianlong Kang , Guoqing Xu , Xizheng Zhang , Wei Wang , Kai Guo , Zhongyi Guo
{"title":"Broadband mid-infrared thermal emission with large degree of circular polarization enabled by symmetry-broken metasurfaces","authors":"Qianlong Kang ,&nbsp;Guoqing Xu ,&nbsp;Xizheng Zhang ,&nbsp;Wei Wang ,&nbsp;Kai Guo ,&nbsp;Zhongyi Guo","doi":"10.1016/j.jsamd.2024.100724","DOIUrl":null,"url":null,"abstract":"<div><p>Mid-infrared (MIR) circularly polarized emission (CPE) is widely used in molecular sensing, information encryption, target detection, and optical communication. However, the generation and regulation of broadband MIR thermal emission with a large degree of circular polarization (DoCP) is still a major challenge. Here, we design a symmetry-broken chiral plasmonic metasurface consisting of asymmetric spilted-ring resonators (ASRRs) to emit broadband CPE with high purity in the MIR region of 3.4–5 μm. The simulated results show that the DoCPs at the wavelengths of 3.74 μm and 4.27 μm are 0.7 and 0.71, respectively, and the DoCP is higher than 0.5 in the wide wavelength ranges of 3.5–4.83 μm. According to the local Kirchhoff's law, the spin-dependent thermal emission originates from the strong inherent local chirality of the ASRR through the near-field distribution and the local emissivity density. Then, the effects of geometric parameters of meta-unit on the DoCP characteristics are studied in detail, which indicates that the geometric perturbation segments quantified by <em>S</em> result in the CPE regulation. Specifically, the DoCP decreases from 0.71 to 0 as the perturbation factor <em>S</em> increases from 0 to 5. Finally, we numerically demonstrate that the designed chiral plasmonic metasurface has potential applications in infrared circularly polarized light detection.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 2","pages":"Article 100724"},"PeriodicalIF":6.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000558/pdfft?md5=d162c1fec9bb0d21337b02ae706dfc5c&pid=1-s2.0-S2468217924000558-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000558","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mid-infrared (MIR) circularly polarized emission (CPE) is widely used in molecular sensing, information encryption, target detection, and optical communication. However, the generation and regulation of broadband MIR thermal emission with a large degree of circular polarization (DoCP) is still a major challenge. Here, we design a symmetry-broken chiral plasmonic metasurface consisting of asymmetric spilted-ring resonators (ASRRs) to emit broadband CPE with high purity in the MIR region of 3.4–5 μm. The simulated results show that the DoCPs at the wavelengths of 3.74 μm and 4.27 μm are 0.7 and 0.71, respectively, and the DoCP is higher than 0.5 in the wide wavelength ranges of 3.5–4.83 μm. According to the local Kirchhoff's law, the spin-dependent thermal emission originates from the strong inherent local chirality of the ASRR through the near-field distribution and the local emissivity density. Then, the effects of geometric parameters of meta-unit on the DoCP characteristics are studied in detail, which indicates that the geometric perturbation segments quantified by S result in the CPE regulation. Specifically, the DoCP decreases from 0.71 to 0 as the perturbation factor S increases from 0 to 5. Finally, we numerically demonstrate that the designed chiral plasmonic metasurface has potential applications in infrared circularly polarized light detection.

Abstract Image

对称性破缺元表面实现大圆极化度的宽带中红外热发射
中红外(MIR)圆偏振发射(CPE)被广泛应用于分子传感、信息加密、目标探测和光通信领域。然而,如何产生和调节具有较大圆偏振(DoCP)度的宽带中红外热发射仍然是一个重大挑战。在这里,我们设计了一种由不对称辐环谐振器(ASRR)组成的对称破缺手性质子元表面,可在 3.4-5 μm 的中红外区域发射高纯度的宽带 CPE。模拟结果表明,波长为 3.74 μm 和 4.27 μm 时的 DoCP 分别为 0.7 和 0.71,而在 3.5-4.83 μm 的宽波长范围内,DoCP 均大于 0.5。根据局域基尔霍夫定律,自旋相关热发射源于 ASRR 通过近场分布和局域发射率密度产生的强固有局域手性。然后,详细研究了元单元几何参数对 DoCP 特性的影响,结果表明,以 S 量化的几何扰动段导致了 CPE 调节。具体来说,当扰动因子 S 从 0 增加到 5 时,DoCP 从 0.71 下降到 0。最后,我们从数值上证明了所设计的手性质子元表面在红外圆偏振光检测中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信