Pengzhan Zhao , Wenqian Shi , Yangfan Ye , Ke Xu , Jingming Hu , Honglu Chao , ZeQiang Tao , Lei Xu , Wei Gu , Liuchao Zhang , Tian Wang , Xinyue Wang , Jing Ji
{"title":"Atox1 protects hippocampal neurons after traumatic brain injury via DJ-1 mediated anti-oxidative stress and mitophagy","authors":"Pengzhan Zhao , Wenqian Shi , Yangfan Ye , Ke Xu , Jingming Hu , Honglu Chao , ZeQiang Tao , Lei Xu , Wei Gu , Liuchao Zhang , Tian Wang , Xinyue Wang , Jing Ji","doi":"10.1016/j.redox.2024.103156","DOIUrl":null,"url":null,"abstract":"<div><p>Regulation of the oxidative stress response is crucial for the management and prognosis of traumatic brain injury (TBI). The copper chaperone Antioxidant 1 (Atox1) plays a crucial role in regulating intracellular copper ion balance and impacting the antioxidant capacity of mitochondria, as well as the oxidative stress state of cells. However, it remains unknown whether Atox1 is involved in modulating oxidative stress following TBI. Here, we investigated the regulatory role of Atox1 in oxidative stress on neurons both in vivo and in vitro, and elucidated the underlying mechanism through culturing hippocampal HT-22 cells with Atox1 mutation. The expression of Atox1 was significantly diminished following TBI, while mice with overexpressed Atox1 exhibited a more preserved hippocampal structure and reduced levels of oxidative stress post-TBI. Furthermore, the mice displayed notable impairments in learning and memory functions after TBI, which were ameliorated by the overexpression of Atox1. In the stretch injury model of HT-22 cells, overexpression of Atox1 mitigated oxidative stress by preserving the normal morphology and network connectivity of mitochondria, as well as facilitating the elimination of damaged mitochondria. Mechanistically, co-immunoprecipitation and mass spectrometry revealed the binding of Atox1 to DJ-1. Knockdown of DJ-1 in HT-22 cells significantly impaired the antioxidant capacity of Atox1. Mutations in the copper-binding motif or sequestration of free copper led to a substantial decrease in the interaction between Atox1 and DJ-1, with overexpression of DJ-1 failing to restore the antioxidant capacity of Atox1 mutants. The findings suggest that DJ-1 mediates the ability of Atox1 to withstand oxidative stress. And targeting Atox1 could be a potential therapeutic approach for addressing post-traumatic neurological dysfunction.</p></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"72 ","pages":"Article 103156"},"PeriodicalIF":10.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213231724001320/pdfft?md5=e6bae0483a13c1f4658dbea85d552e95&pid=1-s2.0-S2213231724001320-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724001320","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Regulation of the oxidative stress response is crucial for the management and prognosis of traumatic brain injury (TBI). The copper chaperone Antioxidant 1 (Atox1) plays a crucial role in regulating intracellular copper ion balance and impacting the antioxidant capacity of mitochondria, as well as the oxidative stress state of cells. However, it remains unknown whether Atox1 is involved in modulating oxidative stress following TBI. Here, we investigated the regulatory role of Atox1 in oxidative stress on neurons both in vivo and in vitro, and elucidated the underlying mechanism through culturing hippocampal HT-22 cells with Atox1 mutation. The expression of Atox1 was significantly diminished following TBI, while mice with overexpressed Atox1 exhibited a more preserved hippocampal structure and reduced levels of oxidative stress post-TBI. Furthermore, the mice displayed notable impairments in learning and memory functions after TBI, which were ameliorated by the overexpression of Atox1. In the stretch injury model of HT-22 cells, overexpression of Atox1 mitigated oxidative stress by preserving the normal morphology and network connectivity of mitochondria, as well as facilitating the elimination of damaged mitochondria. Mechanistically, co-immunoprecipitation and mass spectrometry revealed the binding of Atox1 to DJ-1. Knockdown of DJ-1 in HT-22 cells significantly impaired the antioxidant capacity of Atox1. Mutations in the copper-binding motif or sequestration of free copper led to a substantial decrease in the interaction between Atox1 and DJ-1, with overexpression of DJ-1 failing to restore the antioxidant capacity of Atox1 mutants. The findings suggest that DJ-1 mediates the ability of Atox1 to withstand oxidative stress. And targeting Atox1 could be a potential therapeutic approach for addressing post-traumatic neurological dysfunction.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.