Characterization of invariant complex Finsler metrics on the complex Grassmann manifold

IF 0.6 4区 数学 Q3 MATHEMATICS
Pandeng Cao, Xiaoshu Ge, Chunping Zhong
{"title":"Characterization of invariant complex Finsler metrics on the complex Grassmann manifold","authors":"Pandeng Cao,&nbsp;Xiaoshu Ge,&nbsp;Chunping Zhong","doi":"10.1016/j.difgeo.2024.102138","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>×</mo><mi>U</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> be the complex Grassmann manifold and <span><math><mi>F</mi><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>0</mn></mrow></msup><mi>P</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> be an arbitrary <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant strongly pseudoconvex complex Finsler metric. We prove that <em>F</em> is necessary a Kähler-Berwald metric which is not necessary Hermitian quadratic. We also prove that <em>F</em> is Hermitian quadratic if and only if <em>F</em> is a constant multiple of the canonical <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant Kähler metric on <span><math><mi>P</mi></math></span>. In particular on the complex projective space <span><math><msup><mrow><mi>CP</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mi>U</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>×</mo><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, there exists no <span><math><mi>U</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-invariant strongly pseudoconvex complex Finsler metric other than a constant multiple of the Fubini-Study metric. These invariant metrics are of particular interesting since they are the most important examples of strongly pseudoconvex complex Finsler metrics on <span><math><mi>P</mi></math></span> which are elliptic metrics in the sense that they enjoy very similar holomorphic sectional curvature and bisectional curvature properties as that of the <span><math><mi>U</mi><mo>(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo>)</mo></math></span>-invariant Kähler metrics on <span><math><mi>P</mi></math></span>, nevertheless, these invariant metrics are not necessary Hermitian quadratic, hence provide nontrivial explicit examples for complex Finsler geometry in the compact cases.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"94 ","pages":"Article 102138"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000317","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let P:=U(p+q)/U(p)×U(q) be the complex Grassmann manifold and F:T1,0P[0,+) be an arbitrary U(p+q)-invariant strongly pseudoconvex complex Finsler metric. We prove that F is necessary a Kähler-Berwald metric which is not necessary Hermitian quadratic. We also prove that F is Hermitian quadratic if and only if F is a constant multiple of the canonical U(p+q)-invariant Kähler metric on P. In particular on the complex projective space CPn=U(n+1)/U(n)×U(1), there exists no U(n+1)-invariant strongly pseudoconvex complex Finsler metric other than a constant multiple of the Fubini-Study metric. These invariant metrics are of particular interesting since they are the most important examples of strongly pseudoconvex complex Finsler metrics on P which are elliptic metrics in the sense that they enjoy very similar holomorphic sectional curvature and bisectional curvature properties as that of the U(p+q)-invariant Kähler metrics on P, nevertheless, these invariant metrics are not necessary Hermitian quadratic, hence provide nontrivial explicit examples for complex Finsler geometry in the compact cases.

复格拉斯曼流形上不变复芬斯勒度量的特征
设 P:=U(p+q)/U(p)×U(q) 为复格拉斯曼流形,F:T1,0P→[0,+∞) 为任意 U(p+q)-invariant 强伪凸复 Finsler 度量。我们证明 F 是必要的 Kähler-Berwald 度量,它不是必要的赫米二次元度量。特别是在复投影空间 CPn=U(n+1)/U(n)×U(1) 上,除了 Fubini-Study 公设的常数倍之外,不存在其他 U(n+1)-invariant 强假凸复 Finsler 公设。这些不变度量特别有趣,因为它们是 P 上强伪凸复 Finsler 度量的最重要例子,而这些度量是椭圆度量,即它们享有与 P 上 U(p+q)不变 Kähler 度量非常相似的全形截面曲率和双截面曲率特性、然而,这些不变度量并不一定是赫米特四元数的,因此为紧凑情况下的复芬斯勒几何提供了非简单的明确例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信