Weil zeta functions of group representations over finite fields

Ged Corob Cook, Steffen Kionke, Matteo Vannacci
{"title":"Weil zeta functions of group representations over finite fields","authors":"Ged Corob Cook, Steffen Kionke, Matteo Vannacci","doi":"10.1007/s00029-024-00934-6","DOIUrl":null,"url":null,"abstract":"<p>In this article we define and study a zeta function <span>\\(\\zeta _G\\)</span>—similar to the Hasse-Weil zeta function—which enumerates absolutely irreducible representations over finite fields of a (profinite) group <i>G</i>. This Weil representation zeta function converges on a complex half-plane for all UBERG groups and admits an Euler product decomposition. Our motivation for this investigation is the observation that the reciprocal value <span>\\(\\zeta _G(k)^{-1}\\)</span> at a sufficiently large integer <i>k</i> coincides with the probability that <i>k</i> random elements generate the completed group ring of <i>G</i>. The explicit formulas obtained so far suggest that <span>\\(\\zeta _G\\)</span> is rather well-behaved. A central object of this article is the Weil abscissa, i.e., the abscissa of convergence <i>a</i>(<i>G</i>) of <span>\\(\\zeta _G\\)</span>. We calculate the Weil abscissae for free abelian, free abelian pro-<i>p</i>, free pro-<i>p</i>, free pronilpotent and free prosoluble groups. More generally, we obtain bounds (and sometimes explicit values) for the Weil abscissae of free pro-<span>\\({\\mathfrak {C}}\\)</span> groups, where <span>\\({\\mathfrak {C}}\\)</span> is a class of finite groups with prescribed composition factors. We prove that every real number <span>\\(a \\ge 1\\)</span> is the Weil abscissa <i>a</i>(<i>G</i>) of some profinite group <i>G</i>. In addition, we show that the Euler factors of <span>\\(\\zeta _G\\)</span> are rational functions in <span>\\(p^{-s}\\)</span> if <i>G</i> is virtually abelian. For finite groups <i>G</i> we calculate <span>\\(\\zeta _G\\)</span> using the rational representation theory of <i>G</i>.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00934-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we define and study a zeta function \(\zeta _G\)—similar to the Hasse-Weil zeta function—which enumerates absolutely irreducible representations over finite fields of a (profinite) group G. This Weil representation zeta function converges on a complex half-plane for all UBERG groups and admits an Euler product decomposition. Our motivation for this investigation is the observation that the reciprocal value \(\zeta _G(k)^{-1}\) at a sufficiently large integer k coincides with the probability that k random elements generate the completed group ring of G. The explicit formulas obtained so far suggest that \(\zeta _G\) is rather well-behaved. A central object of this article is the Weil abscissa, i.e., the abscissa of convergence a(G) of \(\zeta _G\). We calculate the Weil abscissae for free abelian, free abelian pro-p, free pro-p, free pronilpotent and free prosoluble groups. More generally, we obtain bounds (and sometimes explicit values) for the Weil abscissae of free pro-\({\mathfrak {C}}\) groups, where \({\mathfrak {C}}\) is a class of finite groups with prescribed composition factors. We prove that every real number \(a \ge 1\) is the Weil abscissa a(G) of some profinite group G. In addition, we show that the Euler factors of \(\zeta _G\) are rational functions in \(p^{-s}\) if G is virtually abelian. For finite groups G we calculate \(\zeta _G\) using the rational representation theory of G.

有限域上群代表的 Weil zeta 函数
在本文中,我们定义并研究了一个zeta函数\(\zeta _G\)--类似于Hasse-Weil zeta函数--它枚举了一个(无穷)群G的有限域上的绝对不可还原表示。这个Weil表示zeta函数收敛于所有UBERG群的复半面,并允许欧拉积分解。我们进行这项研究的动机是观察到在足够大的整数 k 处的倒(\zeta _G(k)^{-1}\)值与 k 个随机元素生成 G 的完整群环的概率重合。本文的一个核心对象是 Weil abscissa,即 \(\zeta _G\) 的收敛性 abscissa a(G)。我们计算了自由无住民群、自由无住民原-p 群、自由原-p 群、自由代potent 群和自由原溶性群的 Weil abscissae。更广义地说,我们得到了自由原-({\mathfrak {C}}\)群的魏氏极大值的边界(有时是明确的值),这里的({\mathfrak {C}}\)是一类具有规定组成因子的有限群。我们证明了每个实数 \(a \ge 1\) 都是某个有限群 G 的 Weil abscissa a(G)。此外,我们还证明了如果 G 实际上是无差别的,那么 \(\zeta _G\) 的欧拉因子是 \(p^{-s}\) 中的有理函数。对于有限群 G,我们使用 G 的有理表示理论来计算 \(\zeta _G\) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信