Ernesto Gianoli, Cristian Salgado-Luarte, Víctor M. Escobedo, Gisela C. Stotz
{"title":"Leaf toughness is a better predictor of herbivory and plant performance than leaf mass per area (LMA) in temperate evergreens","authors":"Ernesto Gianoli, Cristian Salgado-Luarte, Víctor M. Escobedo, Gisela C. Stotz","doi":"10.1007/s10682-024-10298-0","DOIUrl":null,"url":null,"abstract":"<p>The mechanical strengthening of leaves protects seedlings from herbivore damage, particularly in shade-tolerant evergreens. Interspecific studies have shown that leaf mass per area (LMA) and leaf toughness (force-to-punch) can play this role. Here we compared the influence of LMA and leaf toughness on herbivory and plant performance in a temperate rainforest. In seedlings of 14 evergreen species, we addressed the across-species relationship between LMA and force-to-punch, and compared the strength of their associations with herbivory and with species’ light requirements. Moreover, in four understory species we performed a multivariate analysis within-species, analogue to phenotypic selection analysis, evaluating the correlation between seedling performance, estimated as chlorophyll fluorescence (<i>F</i><sub>v</sub>/<i>F</i><sub>m</sub>), and force-to-punch, LMA, lamina density and lamina thickness. LMA and force-to-punch were positively associated across species. Herbivory was negatively correlated with both force-to-punch and LMA, but a stepwise multiple regression showed that force-to-punch was a better predictor of herbivory. Neither leaf lamina density nor thickness were associated with herbivore damage. Those species that were more shade-tolerant had leaves with higher force-to-punch and higher LMA, and less slender seedlings. In the within-species analyses in four shade-tolerant species, seedling performance was generally positively associated with force-to-punch, but not with LMA, lamina thickness, or lamina density. Both interspecific and within-species analyses showed that force-to-punch is more strongly related to herbivore damage and plant performance than LMA. This consistency between interspecific patterns of trait covariation and within-species trait-performance associations suggests that natural selection could have shaped the relationships between mechanical traits and ecological roles observed across species.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10682-024-10298-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical strengthening of leaves protects seedlings from herbivore damage, particularly in shade-tolerant evergreens. Interspecific studies have shown that leaf mass per area (LMA) and leaf toughness (force-to-punch) can play this role. Here we compared the influence of LMA and leaf toughness on herbivory and plant performance in a temperate rainforest. In seedlings of 14 evergreen species, we addressed the across-species relationship between LMA and force-to-punch, and compared the strength of their associations with herbivory and with species’ light requirements. Moreover, in four understory species we performed a multivariate analysis within-species, analogue to phenotypic selection analysis, evaluating the correlation between seedling performance, estimated as chlorophyll fluorescence (Fv/Fm), and force-to-punch, LMA, lamina density and lamina thickness. LMA and force-to-punch were positively associated across species. Herbivory was negatively correlated with both force-to-punch and LMA, but a stepwise multiple regression showed that force-to-punch was a better predictor of herbivory. Neither leaf lamina density nor thickness were associated with herbivore damage. Those species that were more shade-tolerant had leaves with higher force-to-punch and higher LMA, and less slender seedlings. In the within-species analyses in four shade-tolerant species, seedling performance was generally positively associated with force-to-punch, but not with LMA, lamina thickness, or lamina density. Both interspecific and within-species analyses showed that force-to-punch is more strongly related to herbivore damage and plant performance than LMA. This consistency between interspecific patterns of trait covariation and within-species trait-performance associations suggests that natural selection could have shaped the relationships between mechanical traits and ecological roles observed across species.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.