{"title":"A D.C. approximation approach for optimization with probabilistic constraints based on Chen–Harker–Kanzow–Smale smooth plus function","authors":"Yonghong Ren, Yuchao Sun, Dachen Li, Fangfang Guo","doi":"10.1007/s00186-024-00859-y","DOIUrl":null,"url":null,"abstract":"<p>Many important practical problems can be formulated as probabilistic constrained optimization problem (PCOP), which is challenging to solve since it is usually non-convex and non-smooth. Effective methods for (PCOP) mostly focus on approximation techniques. This paper aims at studying the D.C. (difference of two convex functions) approximation techniques. A D.C. approximation is explored to solve the probabilistic constrained optimization problem based on Chen–Harker–Kanzow–Smale (CHKS) smooth plus function. A smooth approximation to probabilistic constraint function is proposed and the corresponding D.C. approximation problem is established. It is proved that the approximation problem is equivalent to the original one under certain conditions. Sequential convex approximation (SCA) algorithm is implemented to solve the D.C. approximation problem. Sample average approximation method is applied to solve the convex subproblem. Numerical results suggest that D.C. approximation technique is effective for optimization with probabilistic constraints.\n</p>","PeriodicalId":49862,"journal":{"name":"Mathematical Methods of Operations Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00186-024-00859-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Many important practical problems can be formulated as probabilistic constrained optimization problem (PCOP), which is challenging to solve since it is usually non-convex and non-smooth. Effective methods for (PCOP) mostly focus on approximation techniques. This paper aims at studying the D.C. (difference of two convex functions) approximation techniques. A D.C. approximation is explored to solve the probabilistic constrained optimization problem based on Chen–Harker–Kanzow–Smale (CHKS) smooth plus function. A smooth approximation to probabilistic constraint function is proposed and the corresponding D.C. approximation problem is established. It is proved that the approximation problem is equivalent to the original one under certain conditions. Sequential convex approximation (SCA) algorithm is implemented to solve the D.C. approximation problem. Sample average approximation method is applied to solve the convex subproblem. Numerical results suggest that D.C. approximation technique is effective for optimization with probabilistic constraints.
期刊介绍:
This peer reviewed journal publishes original and high-quality articles on important mathematical and computational aspects of operations research, in particular in the areas of continuous and discrete mathematical optimization, stochastics, and game theory. Theoretically oriented papers are supposed to include explicit motivations of assumptions and results, while application oriented papers need to contain substantial mathematical contributions. Suggestions for algorithms should be accompanied with numerical evidence for their superiority over state-of-the-art methods. Articles must be of interest for a large audience in operations research, written in clear and correct English, and typeset in LaTeX. A special section contains invited tutorial papers on advanced mathematical or computational aspects of operations research, aiming at making such methodologies accessible for a wider audience.
All papers are refereed. The emphasis is on originality, quality, and importance.