The homotopy decomposition of the suspension of a non-simply-connected five-manifold

IF 1.3 3区 数学 Q1 MATHEMATICS
Pengcheng Li, Zhongjian Zhu
{"title":"The homotopy decomposition of the suspension of a non-simply-connected five-manifold","authors":"Pengcheng Li, Zhongjian Zhu","doi":"10.1017/prm.2024.49","DOIUrl":null,"url":null,"abstract":"In this paper we determine the homotopy types of the reduced suspension space of certain connected orientable closed smooth <jats:inline-formula> <jats:alternatives> <jats:tex-math>$five$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000490_inline2.png\" /> </jats:alternatives> </jats:inline-formula>-manifolds. As applications, we compute the reduced <jats:inline-formula> <jats:alternatives> <jats:tex-math>$K$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000490_inline3.png\" /> </jats:alternatives> </jats:inline-formula>-groups of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$M$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000490_inline4.png\" /> </jats:alternatives> </jats:inline-formula> and show that the suspension map between the third cohomotopy set <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\pi ^3(M)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000490_inline5.png\" /> </jats:alternatives> </jats:inline-formula> and the fourth cohomotopy set <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\pi ^4(\\Sigma M)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000490_inline6.png\" /> </jats:alternatives> </jats:inline-formula> is a bijection.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"75 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.49","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we determine the homotopy types of the reduced suspension space of certain connected orientable closed smooth $five$ -manifolds. As applications, we compute the reduced $K$ -groups of $M$ and show that the suspension map between the third cohomotopy set $\pi ^3(M)$ and the fourth cohomotopy set $\pi ^4(\Sigma M)$ is a bijection.
非简单连接五芒星悬浮的同调分解
在本文中,我们确定了某些连通可定向封闭光滑 $five$ -manifolds 的还原悬浮空间的同调类型。作为应用,我们计算了 $M$ 的还原 $K$ 群,并证明了第三同调集 $\pi ^3(M)$ 和第四同调集 $\pi ^4(\Sigma M)$ 之间的悬浮映射是双射的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信