Amara Nassar-Sheikh Rashid, Femke Hooijberg, Sandy C. Bergkamp, Mariken P. Gruppen, Taco W. Kuijpers, Mike Nurmohamed, Theo Rispens, Gertjan Wolbink, J. Merlijn van den Berg, Dieneke Schonenberg-Meinema, Ron A. A. Mathôt
{"title":"Population Pharmacokinetics of Adalimumab in Juvenile Idiopathic Arthritis Patients: A Retrospective Cohort Study Using Clinical Care Data","authors":"Amara Nassar-Sheikh Rashid, Femke Hooijberg, Sandy C. Bergkamp, Mariken P. Gruppen, Taco W. Kuijpers, Mike Nurmohamed, Theo Rispens, Gertjan Wolbink, J. Merlijn van den Berg, Dieneke Schonenberg-Meinema, Ron A. A. Mathôt","doi":"10.1007/s40272-024-00629-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and Objective</h3><p>Juvenile idiopathic arthritis (JIA) is a chronic autoimmune disorder that primarily affects the joints in children. Notably, it is known to co-occur with uveitis. Adalimumab, a monoclonal anti-TNF antibody, is effective in treating both conditions. A deeper understanding of the pharmacokinetics (PK) of adalimumab in JIA is crucial to advance in more personalized treatment approaches. The objective of this study is to evaluate the population PK profile of adalimumab in JIA and to explain causes for its variability.</p><h3 data-test=\"abstract-sub-heading\">Materials and Methods</h3><p>Adalimumab and antidrug antibody concentrations were retrospectively retrieved from the charts of patients with JIA. Initially, five literature-based population PK models of adalimumab were evaluated to assess their ability to describe the observed concentration–time profiles in the JIA cohort. These models included one specifically for the pediatric Crohn’s disease population and four derived from studies in adult populations in healthy subjects and rheumatoid arthritis patients. Subsequently, a novel population PK model tailored to the JIA population was developed using NONMEM software. Monte Carlo simulations were then conducted utilizing the final PK model to visualize the concentration–time profile of adalimumab in patients with JIA and the impact of covariates.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>A cohort of 50 patients with JIA with 78 available adalimumab samples was assessed. The mean age was 11.8 ± 3.9 years, with a median body weight of 49 kg (interquartile range 29.4–59.8 kg). All literature models adequately described the concentration–time profiles in JIA. The best model, which was developed in patients with rheumatoid arthritis during the maintenance phase of treatment, served as a basis for estimating clearance in JIA, resulting in a value of 0.37 L per day per 70 kg. Patient body weight, antidrug antibodies, methotrexate use, CRP level, and comorbidity of uveitis were found to have a significant impact on adalimumab clearance, and these reduced the inter-patient variability from 58.6 to 28.0%. On steady state in the simulated patient population, the mean trough level was 7.4 ± 5.5 mg/L. The two dosing regimens of 20 and 40 mg every other week, based on patients’ body weight, resulted in comparable simulated overall drug exposure.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Five literature models effectively described adalimumab PK in this pediatric cohort, highlighting the potential for extrapolating existing models to the pediatric population. The new JIA model confirmed the effect of several known covariates and found a novel association for drug clearance with methotrexate use (lower) and uveitis (higher), which might have clinical relevance for personalized dosing in JIA.</p>","PeriodicalId":19955,"journal":{"name":"Pediatric Drugs","volume":"49 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40272-024-00629-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective
Juvenile idiopathic arthritis (JIA) is a chronic autoimmune disorder that primarily affects the joints in children. Notably, it is known to co-occur with uveitis. Adalimumab, a monoclonal anti-TNF antibody, is effective in treating both conditions. A deeper understanding of the pharmacokinetics (PK) of adalimumab in JIA is crucial to advance in more personalized treatment approaches. The objective of this study is to evaluate the population PK profile of adalimumab in JIA and to explain causes for its variability.
Materials and Methods
Adalimumab and antidrug antibody concentrations were retrospectively retrieved from the charts of patients with JIA. Initially, five literature-based population PK models of adalimumab were evaluated to assess their ability to describe the observed concentration–time profiles in the JIA cohort. These models included one specifically for the pediatric Crohn’s disease population and four derived from studies in adult populations in healthy subjects and rheumatoid arthritis patients. Subsequently, a novel population PK model tailored to the JIA population was developed using NONMEM software. Monte Carlo simulations were then conducted utilizing the final PK model to visualize the concentration–time profile of adalimumab in patients with JIA and the impact of covariates.
Results
A cohort of 50 patients with JIA with 78 available adalimumab samples was assessed. The mean age was 11.8 ± 3.9 years, with a median body weight of 49 kg (interquartile range 29.4–59.8 kg). All literature models adequately described the concentration–time profiles in JIA. The best model, which was developed in patients with rheumatoid arthritis during the maintenance phase of treatment, served as a basis for estimating clearance in JIA, resulting in a value of 0.37 L per day per 70 kg. Patient body weight, antidrug antibodies, methotrexate use, CRP level, and comorbidity of uveitis were found to have a significant impact on adalimumab clearance, and these reduced the inter-patient variability from 58.6 to 28.0%. On steady state in the simulated patient population, the mean trough level was 7.4 ± 5.5 mg/L. The two dosing regimens of 20 and 40 mg every other week, based on patients’ body weight, resulted in comparable simulated overall drug exposure.
Conclusions
Five literature models effectively described adalimumab PK in this pediatric cohort, highlighting the potential for extrapolating existing models to the pediatric population. The new JIA model confirmed the effect of several known covariates and found a novel association for drug clearance with methotrexate use (lower) and uveitis (higher), which might have clinical relevance for personalized dosing in JIA.
期刊介绍:
Pediatric Drugs promotes the optimization and advancement of all aspects of pharmacotherapy for healthcare professionals interested in pediatric drug therapy (including vaccines). The program of review and original research articles provides healthcare decision makers with clinically applicable knowledge on issues relevant to drug therapy in all areas of neonatology and the care of children and adolescents. The Journal includes:
-overviews of contentious or emerging issues.
-comprehensive narrative reviews of topics relating to the effective and safe management of drug therapy through all stages of pediatric development.
-practical reviews covering optimum drug management of specific clinical situations.
-systematic reviews that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by the PRISMA statement.
-Adis Drug Reviews of the properties and place in therapy of both newer and established drugs in the pediatric population.
-original research articles reporting the results of well-designed studies with a strong link to clinical practice, such as clinical pharmacodynamic and pharmacokinetic studies, clinical trials, meta-analyses, outcomes research, and pharmacoeconomic and pharmacoepidemiological studies.
Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Pediatric Drugs may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.