Computing the Number and Average Size of Connected Sets in Planar 3-Trees

IF 0.6 4区 数学 Q3 MATHEMATICS
Zuwen Luo, Kexiang Xu
{"title":"Computing the Number and Average Size of Connected Sets in Planar 3-Trees","authors":"Zuwen Luo, Kexiang Xu","doi":"10.1007/s00373-024-02783-8","DOIUrl":null,"url":null,"abstract":"<p>A vertex set in a graph is a connected set if it induces a connected subgraph. For a tree <i>T</i>, each subgraph induced by a connected set of <i>T</i> is actually a subtree of <i>T</i>. The number and average size of subtrees of a tree <i>T</i> are two well-studied parameters. Yan and Yeh developed a linear-time algorithm for computing the number of subtrees in a tree through “generating function”. In this paper, we present linear-time algorithms for computing the number and average size of connected sets in a planar 3-tree.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"30 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02783-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A vertex set in a graph is a connected set if it induces a connected subgraph. For a tree T, each subgraph induced by a connected set of T is actually a subtree of T. The number and average size of subtrees of a tree T are two well-studied parameters. Yan and Yeh developed a linear-time algorithm for computing the number of subtrees in a tree through “generating function”. In this paper, we present linear-time algorithms for computing the number and average size of connected sets in a planar 3-tree.

Abstract Image

计算平面 3 树中连接集的数量和平均大小
如果图中的一个顶点集能诱导出一个连通的子图,那么这个顶点集就是一个连通集。对于树 T 而言,T 的连通集所诱导的每个子图实际上都是 T 的一棵子树。Yan 和 Yeh 提出了一种通过 "生成函数 "计算树中子树数量的线性时间算法。本文提出了计算平面 3 树中连通集的数量和平均大小的线性时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信