Learning Feature Semantic Matching for Spatio-Temporal Video Grounding

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Tong Zhang;Hao Fang;Hao Zhang;Jialin Gao;Xiankai Lu;Xiushan Nie;Yilong Yin
{"title":"Learning Feature Semantic Matching for Spatio-Temporal Video Grounding","authors":"Tong Zhang;Hao Fang;Hao Zhang;Jialin Gao;Xiankai Lu;Xiushan Nie;Yilong Yin","doi":"10.1109/TMM.2024.3387696","DOIUrl":null,"url":null,"abstract":"Spatio-temporal video grounding (STVG) aims to localize a spatio-temporal tube, including temporal boundaries and object bounding boxes, that semantically corresponds to a given language description in an untrimmed video. The existing one-stage solutions in this task face two significant challenges, namely, vision-text semantic misalignment and spatial mislocalization, which limit their performance in grounding. These two limitations are mainly caused by neglect of fine-grained alignment in cross-modality fusion and the reliance on a text-agnostic query in sequentially spatial localization. To address these issues, we propose an effective model with a newly designed Feature Semantic Matching (FSM) module based on a Transformer architecture to address the above issues. Our method introduces a cross-modal feature matching module to achieve multi-granularity alignment between video and text while preventing the weakening of important features during the feature fusion stage. Additionally, we design a query-modulated matching module to facilitate text-relevant tube construction by multiple query generation and tubulet sequence matching. To ensure the quality of tube construction, we employ a novel mismatching rectify contrastive loss to rectify the mismatching between the learnable query and the objects corresponding to the text descriptions by restricting the generated spatial query. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods on two challenging STVG benchmarks.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"9268-9279"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10504631/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatio-temporal video grounding (STVG) aims to localize a spatio-temporal tube, including temporal boundaries and object bounding boxes, that semantically corresponds to a given language description in an untrimmed video. The existing one-stage solutions in this task face two significant challenges, namely, vision-text semantic misalignment and spatial mislocalization, which limit their performance in grounding. These two limitations are mainly caused by neglect of fine-grained alignment in cross-modality fusion and the reliance on a text-agnostic query in sequentially spatial localization. To address these issues, we propose an effective model with a newly designed Feature Semantic Matching (FSM) module based on a Transformer architecture to address the above issues. Our method introduces a cross-modal feature matching module to achieve multi-granularity alignment between video and text while preventing the weakening of important features during the feature fusion stage. Additionally, we design a query-modulated matching module to facilitate text-relevant tube construction by multiple query generation and tubulet sequence matching. To ensure the quality of tube construction, we employ a novel mismatching rectify contrastive loss to rectify the mismatching between the learnable query and the objects corresponding to the text descriptions by restricting the generated spatial query. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods on two challenging STVG benchmarks.
学习特征语义匹配,实现时空视频接地
时空视频定位(STVG)旨在定位一个时空管道,包括时间边界和物体边界框,该管道在语义上与未修剪视频中的给定语言描述相对应。在这项任务中,现有的单阶段解决方案面临两个重大挑战,即视觉-文本语义错位和空间定位错误,这限制了它们的定位性能。这两个局限性主要是由于在跨模态融合中忽略了细粒度对齐,以及在顺序空间定位中依赖于与文本无关的查询造成的。为了解决这些问题,我们提出了一个有效的模型,该模型采用了全新设计的基于变换器架构的特征语义匹配(FSM)模块,以解决上述问题。我们的方法引入了跨模态特征匹配模块,以实现视频和文本之间的多粒度对齐,同时防止在特征融合阶段弱化重要特征。此外,我们还设计了一个查询调制匹配模块,通过多重查询生成和小管序列匹配来促进文本相关小管的构建。为了确保管道构建的质量,我们采用了一种新颖的错配纠正对比度损失(mismatching rectify contrastive loss),通过限制生成的空间查询,纠正可学习查询与文本描述对应对象之间的错配。大量实验证明,在两个具有挑战性的 STVG 基准上,我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信