{"title":"Skin Cancer Image Segmentation Based on Midpoint Analysis Approach","authors":"Uzma Saghir, Shailendra Kumar Singh, Moin Hasan","doi":"10.1007/s10278-024-01106-w","DOIUrl":null,"url":null,"abstract":"<p>Skin cancer affects people of all ages and is a common disease. The death toll from skin cancer rises with a late diagnosis. An automated mechanism for early-stage skin cancer detection is required to diminish the mortality rate. Visual examination with scanning or imaging screening is a common mechanism for detecting this disease, but due to its similarity to other diseases, this mechanism shows the least accuracy. This article introduces an innovative segmentation mechanism that operates on the ISIC dataset to divide skin images into critical and non-critical sections. The main objective of the research is to segment lesions from dermoscopic skin images. The suggested framework is completed in two steps. The first step is to pre-process the image; for this, we have applied a bottom hat filter for hair removal and image enhancement by applying DCT and color coefficient. In the next phase, a background subtraction method with midpoint analysis is applied for segmentation to extract the region of interest and achieves an accuracy of 95.30%. The ground truth for the validation of segmentation is accomplished by comparing the segmented images with validation data provided with the ISIC dataset.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"58 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01106-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Skin cancer affects people of all ages and is a common disease. The death toll from skin cancer rises with a late diagnosis. An automated mechanism for early-stage skin cancer detection is required to diminish the mortality rate. Visual examination with scanning or imaging screening is a common mechanism for detecting this disease, but due to its similarity to other diseases, this mechanism shows the least accuracy. This article introduces an innovative segmentation mechanism that operates on the ISIC dataset to divide skin images into critical and non-critical sections. The main objective of the research is to segment lesions from dermoscopic skin images. The suggested framework is completed in two steps. The first step is to pre-process the image; for this, we have applied a bottom hat filter for hair removal and image enhancement by applying DCT and color coefficient. In the next phase, a background subtraction method with midpoint analysis is applied for segmentation to extract the region of interest and achieves an accuracy of 95.30%. The ground truth for the validation of segmentation is accomplished by comparing the segmented images with validation data provided with the ISIC dataset.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.