{"title":"Cross-sectional geometrical characteristic for the bends along the lower Jingjiang reach","authors":"Haoyong Tian, Chenchen Yao, Zaimin Ren, Zhaofang Zeng, Jing Guo, Minghui Yu, Chunchen Xia","doi":"10.1680/jwama.23.00062","DOIUrl":null,"url":null,"abstract":"The evolution of the bar-pool configurations in response to the upstream damming has significant impacts on channel regulations, navigations, water intakes and protection projects. Herein, this paper reports and analyses the evolution of bar-pool configurations in the bends along the Lower Jingjiang Reach (LJR) after the impoundment of the Three Gorge Dam (TGD), which is distinguished from the natural evolution of the bends. The main factors to the different adjustments of bar-pool configurations are the changes in incoming flow and sediment regime during pre- and post-TGD periods. To capture the changes in the bar-pool configurations, we have presented a new cross-sectional geometrical characteristic - relative lateral distance of the centroid (RLDC). RLDC has close relations with incoming sediment coefficient (i.e. incoming discharge divided by suspended sediment concentration during flood season). RLDC is better than the conventional cross-sectional geometrical characteristic (e.g. width to depth ratio) to indicate the bar-pool configurations of the downstream of the large dam projects. Based on the delayed response model, the values of RLDC in the bends of the LJR are related to the previous 4-6 years’ incoming sediment coefficient, and the correlation coefficient is about 0.90. RLDC is expected to capture the variations of bar-pool configurations in the bends downstream of the large dam project.","PeriodicalId":54569,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Water Management","volume":"251 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Water Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jwama.23.00062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution of the bar-pool configurations in response to the upstream damming has significant impacts on channel regulations, navigations, water intakes and protection projects. Herein, this paper reports and analyses the evolution of bar-pool configurations in the bends along the Lower Jingjiang Reach (LJR) after the impoundment of the Three Gorge Dam (TGD), which is distinguished from the natural evolution of the bends. The main factors to the different adjustments of bar-pool configurations are the changes in incoming flow and sediment regime during pre- and post-TGD periods. To capture the changes in the bar-pool configurations, we have presented a new cross-sectional geometrical characteristic - relative lateral distance of the centroid (RLDC). RLDC has close relations with incoming sediment coefficient (i.e. incoming discharge divided by suspended sediment concentration during flood season). RLDC is better than the conventional cross-sectional geometrical characteristic (e.g. width to depth ratio) to indicate the bar-pool configurations of the downstream of the large dam projects. Based on the delayed response model, the values of RLDC in the bends of the LJR are related to the previous 4-6 years’ incoming sediment coefficient, and the correlation coefficient is about 0.90. RLDC is expected to capture the variations of bar-pool configurations in the bends downstream of the large dam project.
期刊介绍:
Water Management publishes papers on all aspects of water treatment, water supply, river, wetland and catchment management, inland waterways and urban regeneration.
Topics covered: applied fluid dynamics and water (including supply, treatment and sewerage) and river engineering; together with the increasingly important fields of wetland and catchment management, groundwater and contaminated land, waterfront development and urban regeneration. The scope also covers hydroinformatics tools, risk and uncertainty methods, as well as environmental, social and economic issues relating to sustainable development.