Zhiqiang Han, Yang Liu, Xiaohong Wu, Daekyun Oh, Jaewon Jang
{"title":"Ultrasonic non-destructive inspection method for glass fibre reinforcement polymer (GFRP) hull plates considering design and construction characteristics","authors":"Zhiqiang Han, Yang Liu, Xiaohong Wu, Daekyun Oh, Jaewon Jang","doi":"10.1177/14750902241245539","DOIUrl":null,"url":null,"abstract":"The design and construction characteristics, including glass fibre weight fraction ( Gc), number of single-ply layers, fabric combination, and fabrication quality, of glass fibre reinforcement polymer (GFRP) hull plates affect ultrasound propagation characteristics, such as ultrasonic velocity and attenuation, thereby influencing the accuracy of ultrasonic non-destructive test results. Therefore, this study is to propose a method to decrease the ultrasonic test errors of GFRP hull plate by using statistical method. The GFRP specimens with Gc of approximately 30–50 wt%, thicknesses of approximately 5–20 mm, and different fabric combinations were prepared using the hand lay-up method, considering the general design–construction characteristics. Further, an ultrasonic velocity decision method for ultrasonic inspection was proposed considering the GFRP hull design-construction characteristics, such as Gc and number of single-ply layers of hull plate by multiple linear regression method. The results show that the proposed method can reduce the thickness measurement error from approximately 20%–30% to 1%–2%, compared to an existing ultrasonic inspection method, only considering the Gc effect on ultrasonic velocity, which indicates that the proposed test method is suitable for practical applications.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241245539","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
The design and construction characteristics, including glass fibre weight fraction ( Gc), number of single-ply layers, fabric combination, and fabrication quality, of glass fibre reinforcement polymer (GFRP) hull plates affect ultrasound propagation characteristics, such as ultrasonic velocity and attenuation, thereby influencing the accuracy of ultrasonic non-destructive test results. Therefore, this study is to propose a method to decrease the ultrasonic test errors of GFRP hull plate by using statistical method. The GFRP specimens with Gc of approximately 30–50 wt%, thicknesses of approximately 5–20 mm, and different fabric combinations were prepared using the hand lay-up method, considering the general design–construction characteristics. Further, an ultrasonic velocity decision method for ultrasonic inspection was proposed considering the GFRP hull design-construction characteristics, such as Gc and number of single-ply layers of hull plate by multiple linear regression method. The results show that the proposed method can reduce the thickness measurement error from approximately 20%–30% to 1%–2%, compared to an existing ultrasonic inspection method, only considering the Gc effect on ultrasonic velocity, which indicates that the proposed test method is suitable for practical applications.
期刊介绍:
The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.