{"title":"Topological sensitivity for semiflow","authors":"Ali Barzanouni, Somayyeh Jangjooye Shaldehi","doi":"10.1007/s00233-024-10425-x","DOIUrl":null,"url":null,"abstract":"<p>We give a pointwise version of sensitivity in terms of open covers for a semiflow (<i>T</i>, <i>X</i>) of a topological semigroup <i>T</i> on a Hausdorff space <i>X</i> and call it a Hausdorff sensitive point. If <span>\\((X, {\\mathscr {U}})\\)</span> is a uniform space with topology <span>\\(\\tau \\)</span>, then the definition of Hausdorff sensitivity for <span>\\((T, (X, \\tau ))\\)</span> gives a pointwise version of sensitivity in terms of uniformity and we call it a uniformly sensitive point. For a semiflow (<i>T</i>, <i>X</i>) on a compact Hausdorff space <i>X</i>, these notions (i.e. Hausdorff sensitive point and uniformly sensitive point) are equal and they are <i>T</i>-invariant if <i>T</i> is a <i>C</i>-semigroup. They are not preserved by factor maps and subsystems, but behave slightly better with respect to lifting. We give the definition of a topologically equicontinuous pair for a semiflow (<i>T</i>, <i>X</i>) on a topological space <i>X</i> and show that if (<i>T</i>, <i>X</i>) is a topologically equicontinuous pair in (<i>x</i>, <i>y</i>), for all <span>\\(y\\in X\\)</span>, then <span>\\(\\overline{Tx}= D_T(x)\\)</span> where </p><span>$$\\begin{aligned} D_T(x)= \\bigcap \\{ \\overline{TU}: \\text { for all open neighborhoods}\\, U\\, \\text {of}\\, x \\}. \\end{aligned}$$</span><p>We prove for a topologically transitive semiflow (<i>T</i>, <i>X</i>) of a <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> with a topologically equicontinuous point that the set of topologically equicontinuous points coincides with the set of transitive points. This implies that every minimal semiflow of <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> with a topologically equicontinuous point is topologically equicontinuous. Moreover, we show that if <i>X</i> is a regular space and (<i>T</i>, <i>X</i>) is not a topologically equicontinuous pair in (<i>x</i>, <i>y</i>), then <i>x</i> is a Hausdorff sensitive point for (<i>T</i>, <i>X</i>). Hence, a minimal semiflow of a <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> is either topologically equicontinuous or topologically sensitive.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10425-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We give a pointwise version of sensitivity in terms of open covers for a semiflow (T, X) of a topological semigroup T on a Hausdorff space X and call it a Hausdorff sensitive point. If \((X, {\mathscr {U}})\) is a uniform space with topology \(\tau \), then the definition of Hausdorff sensitivity for \((T, (X, \tau ))\) gives a pointwise version of sensitivity in terms of uniformity and we call it a uniformly sensitive point. For a semiflow (T, X) on a compact Hausdorff space X, these notions (i.e. Hausdorff sensitive point and uniformly sensitive point) are equal and they are T-invariant if T is a C-semigroup. They are not preserved by factor maps and subsystems, but behave slightly better with respect to lifting. We give the definition of a topologically equicontinuous pair for a semiflow (T, X) on a topological space X and show that if (T, X) is a topologically equicontinuous pair in (x, y), for all \(y\in X\), then \(\overline{Tx}= D_T(x)\) where
$$\begin{aligned} D_T(x)= \bigcap \{ \overline{TU}: \text { for all open neighborhoods}\, U\, \text {of}\, x \}. \end{aligned}$$
We prove for a topologically transitive semiflow (T, X) of a C-semigroup T on a regular space X with a topologically equicontinuous point that the set of topologically equicontinuous points coincides with the set of transitive points. This implies that every minimal semiflow of C-semigroup T on a regular space X with a topologically equicontinuous point is topologically equicontinuous. Moreover, we show that if X is a regular space and (T, X) is not a topologically equicontinuous pair in (x, y), then x is a Hausdorff sensitive point for (T, X). Hence, a minimal semiflow of a C-semigroup T on a regular space X is either topologically equicontinuous or topologically sensitive.