{"title":"Topological sensitivity for semiflow","authors":"Ali Barzanouni, Somayyeh Jangjooye Shaldehi","doi":"10.1007/s00233-024-10425-x","DOIUrl":null,"url":null,"abstract":"<p>We give a pointwise version of sensitivity in terms of open covers for a semiflow (<i>T</i>, <i>X</i>) of a topological semigroup <i>T</i> on a Hausdorff space <i>X</i> and call it a Hausdorff sensitive point. If <span>\\((X, {\\mathscr {U}})\\)</span> is a uniform space with topology <span>\\(\\tau \\)</span>, then the definition of Hausdorff sensitivity for <span>\\((T, (X, \\tau ))\\)</span> gives a pointwise version of sensitivity in terms of uniformity and we call it a uniformly sensitive point. For a semiflow (<i>T</i>, <i>X</i>) on a compact Hausdorff space <i>X</i>, these notions (i.e. Hausdorff sensitive point and uniformly sensitive point) are equal and they are <i>T</i>-invariant if <i>T</i> is a <i>C</i>-semigroup. They are not preserved by factor maps and subsystems, but behave slightly better with respect to lifting. We give the definition of a topologically equicontinuous pair for a semiflow (<i>T</i>, <i>X</i>) on a topological space <i>X</i> and show that if (<i>T</i>, <i>X</i>) is a topologically equicontinuous pair in (<i>x</i>, <i>y</i>), for all <span>\\(y\\in X\\)</span>, then <span>\\(\\overline{Tx}= D_T(x)\\)</span> where </p><span>$$\\begin{aligned} D_T(x)= \\bigcap \\{ \\overline{TU}: \\text { for all open neighborhoods}\\, U\\, \\text {of}\\, x \\}. \\end{aligned}$$</span><p>We prove for a topologically transitive semiflow (<i>T</i>, <i>X</i>) of a <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> with a topologically equicontinuous point that the set of topologically equicontinuous points coincides with the set of transitive points. This implies that every minimal semiflow of <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> with a topologically equicontinuous point is topologically equicontinuous. Moreover, we show that if <i>X</i> is a regular space and (<i>T</i>, <i>X</i>) is not a topologically equicontinuous pair in (<i>x</i>, <i>y</i>), then <i>x</i> is a Hausdorff sensitive point for (<i>T</i>, <i>X</i>). Hence, a minimal semiflow of a <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> is either topologically equicontinuous or topologically sensitive.\n</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"99 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semigroup Forum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10425-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We give a pointwise version of sensitivity in terms of open covers for a semiflow (T, X) of a topological semigroup T on a Hausdorff space X and call it a Hausdorff sensitive point. If \((X, {\mathscr {U}})\) is a uniform space with topology \(\tau \), then the definition of Hausdorff sensitivity for \((T, (X, \tau ))\) gives a pointwise version of sensitivity in terms of uniformity and we call it a uniformly sensitive point. For a semiflow (T, X) on a compact Hausdorff space X, these notions (i.e. Hausdorff sensitive point and uniformly sensitive point) are equal and they are T-invariant if T is a C-semigroup. They are not preserved by factor maps and subsystems, but behave slightly better with respect to lifting. We give the definition of a topologically equicontinuous pair for a semiflow (T, X) on a topological space X and show that if (T, X) is a topologically equicontinuous pair in (x, y), for all \(y\in X\), then \(\overline{Tx}= D_T(x)\) where
$$\begin{aligned} D_T(x)= \bigcap \{ \overline{TU}: \text { for all open neighborhoods}\, U\, \text {of}\, x \}. \end{aligned}$$
We prove for a topologically transitive semiflow (T, X) of a C-semigroup T on a regular space X with a topologically equicontinuous point that the set of topologically equicontinuous points coincides with the set of transitive points. This implies that every minimal semiflow of C-semigroup T on a regular space X with a topologically equicontinuous point is topologically equicontinuous. Moreover, we show that if X is a regular space and (T, X) is not a topologically equicontinuous pair in (x, y), then x is a Hausdorff sensitive point for (T, X). Hence, a minimal semiflow of a C-semigroup T on a regular space X is either topologically equicontinuous or topologically sensitive.
期刊介绍:
Semigroup Forum is a platform for speedy and efficient transmission of information on current research in semigroup theory.
Scope: Algebraic semigroups, topological semigroups, partially ordered semigroups, semigroups of measures and harmonic analysis on semigroups, numerical semigroups, transformation semigroups, semigroups of operators, and applications of semigroup theory to other disciplines such as ring theory, category theory, automata, logic, etc.
Languages: English (preferred), French, German, Russian.
Survey Articles: Expository, such as a symposium lecture. Of any length. May include original work, but should present the nonspecialist with a reasonably elementary and self-contained account of the fundamental parts of the subject.
Research Articles: Will be subject to the usual refereeing procedure.
Research Announcements: Description, limited to eight pages, of new results, mostly without proofs, of full length papers appearing elsewhere. The announcement must be accompanied by a copy of the unabridged version.
Short Notes: (Maximum 4 pages) Worthy of the readers'' attention, such as new proofs, significant generalizations of known facts, comments on unsolved problems, historical remarks, etc.
Research Problems: Unsolved research problems.
Announcements: Of conferences, seminars, and symposia on Semigroup Theory.
Abstracts and Bibliographical Items: Abstracts in English, limited to one page, of completed work are solicited.
Listings of books, papers, and lecture notes previously published elsewhere and, above all, of new papers for which preprints are available are solicited from all authors.
Abstracts for Reviewing Journals: Authors are invited to provide with their manuscript informally a one-page abstract of their contribution with key words and phrases and with subject matter classification. This material will be forwarded to Zentralblatt für Mathematik.