Haiou Zhang, Yang Zhang, Tingting Cao, Yingguo Wang, Xiandong Hou
{"title":"Effects of freeze–thaw cycles on soil nutrients by soft rock and sand remodeling","authors":"Haiou Zhang, Yang Zhang, Tingting Cao, Yingguo Wang, Xiandong Hou","doi":"10.1515/geo-2022-0626","DOIUrl":null,"url":null,"abstract":"To explore the mechanism of freeze–thaw cycles on the nutrient release of soft rock and sand-remodeled soils in Mu Us Sandy land of China, and to clarify the adaptation potential of remodeled soils with different proportions to extreme environment, indoor freezer simulation freeze–thaw experiments were carried out. The research results show that during the 2 cycles of freeze–thaw, the remodeled soil organic matter content and total nitrogen content (TNC) of the three treatments reached their peaks. Compared with that before freezing, T1, T2, and T3 treatments increased TNC by 40.9, 90.2, and 118.9%. The freeze–thaw cycle has a significant impact on the emergence rate of maize (<jats:italic>P</jats:italic> < 0.05). In the soil during the 2 freeze–thaw cycles, the seedling emergence rate of maize is the highest. Compared with non-freeze–thaw treatment, the maize emergence rate of T1, T2, and T3 treatments was increased by 2, 3, and 3 times, and the emergence rate of T2 and T3 treatments was higher than that of T1 treatments under different freeze–thaw cycles. In conclusion, short-term freeze–thaw cycles can promote soil carbon and nitrogen mineralization and improve nutrient availability in Mu Us Sandy land, and T2 and T3 treatments have better adaptability to the environment.","PeriodicalId":48712,"journal":{"name":"Open Geosciences","volume":"188 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geo-2022-0626","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To explore the mechanism of freeze–thaw cycles on the nutrient release of soft rock and sand-remodeled soils in Mu Us Sandy land of China, and to clarify the adaptation potential of remodeled soils with different proportions to extreme environment, indoor freezer simulation freeze–thaw experiments were carried out. The research results show that during the 2 cycles of freeze–thaw, the remodeled soil organic matter content and total nitrogen content (TNC) of the three treatments reached their peaks. Compared with that before freezing, T1, T2, and T3 treatments increased TNC by 40.9, 90.2, and 118.9%. The freeze–thaw cycle has a significant impact on the emergence rate of maize (P < 0.05). In the soil during the 2 freeze–thaw cycles, the seedling emergence rate of maize is the highest. Compared with non-freeze–thaw treatment, the maize emergence rate of T1, T2, and T3 treatments was increased by 2, 3, and 3 times, and the emergence rate of T2 and T3 treatments was higher than that of T1 treatments under different freeze–thaw cycles. In conclusion, short-term freeze–thaw cycles can promote soil carbon and nitrogen mineralization and improve nutrient availability in Mu Us Sandy land, and T2 and T3 treatments have better adaptability to the environment.
期刊介绍:
Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an open access, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Atmospheric Sciences, Geology, Geophysics, Geography, Oceanography and Hydrology, Glaciology, Speleology, Volcanology, Soil Science, Palaeoecology, Geotourism, Geoinformatics, Geostatistics.