Sultan Almotairi, Olayan Alharbi, Zaid Alzaid, Badr Almutairi, Basma Mohamed
{"title":"The Secure Metric Dimension of the Globe Graph and the Flag Graph","authors":"Sultan Almotairi, Olayan Alharbi, Zaid Alzaid, Badr Almutairi, Basma Mohamed","doi":"10.1155/2024/3084976","DOIUrl":null,"url":null,"abstract":"Let <i>G</i> = (<i>V</i>, <i>E</i>) be a connected, basic, and finite graph. A subset <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 19.548 12.5794\" width=\"19.548pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.917,0)\"></path></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"23.1301838 -9.28833 19.35 12.5794\" width=\"19.35pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.18,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.691,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,34.62,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,39.566,0)\"></path></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"44.6591838 -9.28833 14.84 12.5794\" width=\"14.84pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,44.709,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,51.638,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,56.585,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"61.6781838 -9.28833 18.427 12.5794\" width=\"18.427pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,61.728,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,66.871,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,72.014,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,77.191,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"82.28418380000001 -9.28833 16.887 12.5794\" width=\"16.887pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,82.334,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,89.263,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,94.41,0)\"></path></g></svg></span> of <i>V</i>(<i>G</i>) is said to be a resolving set if for any <i>y</i> ∈ <i>V</i>(<i>G</i>), the code of <i>y</i> with regards to <i>T</i>, represented by <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 31.7255 12.7178\" width=\"31.7255pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,15.009,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,19.507,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.036,0)\"></path></g></svg>,</span> which is defined as <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 42.797 12.7178\" width=\"42.797pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-68\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"><use xlink:href=\"#g50-85\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.009,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.507,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,27.036,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,35.166,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"46.3791838 -9.28833 26.552 12.7178\" width=\"26.552pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,46.429,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,53.644,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,58.142,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,65.071,3.132)\"><use xlink:href=\"#g50-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,70.017,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"75.1101838 -9.28833 14.992 12.7178\" width=\"14.992pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,75.16,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,82.69,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,87.188,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"92.28118380000001 -9.28833 26.552 12.7178\" width=\"26.552pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,92.331,0)\"><use xlink:href=\"#g113-101\"></use></g><g transform=\"matrix(.013,0,0,-0.013,99.546,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,104.044,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,110.973,3.132)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,115.919,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"121.0121838 -9.28833 14.992 12.7178\" width=\"14.992pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,121.062,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,128.592,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,133.09,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"138.1831838 -9.28833 18.426 12.7178\" width=\"18.426pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,138.233,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,143.376,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,148.519,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,153.695,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"158.7891838 -9.28833 26.753 12.7178\" width=\"26.753pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,158.839,0)\"><use xlink:href=\"#g113-101\"></use></g><g transform=\"matrix(.013,0,0,-0.013,166.054,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,170.552,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,177.481,3.132)\"><use xlink:href=\"#g50-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,182.628,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"187.72118379999998 -9.28833 12.652 12.7178\" width=\"12.652pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,187.771,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,195.301,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>,</span></span> is different for various <i>y</i>. The dimension of <i>G</i> is the smallest cardinality of a resolving set and is denoted by dim(<i>G</i>). If, for any <i>t</i> ∈ <i>V</i> – <i>S</i>, there exists <i>r</i> ∈ <i>S</i> such that <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 46.964 11.5564\" width=\"46.964pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.498,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.634,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,17.42,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,21.931,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.419,0)\"><use xlink:href=\"#g113-126\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.93,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,39.333,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"49.820183799999995 -9.28833 13.742 11.5564\" width=\"13.742pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,49.87,0)\"><use xlink:href=\"#g113-124\"></use></g><g transform=\"matrix(.013,0,0,-0.013,54.381,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,58.814,0)\"><use xlink:href=\"#g113-126\"></use></g></svg></span> is a resolving set, then the resolving set <i>S</i> is secure. The secure metric dimension of 𝐺 is the cardinal number of the minimum secure resolving set. Determining the secure metric dimension of any given graph is an NP-complete problem. In addition, there are several uses for the metric dimension in a variety of fields, including image processing, pattern recognition, network discovery and verification, geographic routing protocols, and combinatorial optimization. In this paper, we determine the secure metric dimension of special graphs such as a globe graph <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.3836 12.5794\" width=\"17.3836pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,8.892,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.064,3.132)\"></path></g></svg>,</span> flag graph <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 16.3789 12.5794\" width=\"16.3789pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,7.895,0)\"><use xlink:href=\"#g113-109\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,11.067,3.132)\"><use xlink:href=\"#g50-111\"></use></g></svg>,</span> <i>H</i>- graph of path <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 11.9554 11.927\" width=\"11.9554pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.656,3.132)\"><use xlink:href=\"#g50-111\"></use></g></svg>,</span> a bistar graph <span><svg height=\"16.5945pt\" style=\"vertical-align:-5.003099pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 19.8929 16.5945\" width=\"19.8929pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,7.813,-5.741)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.748,3.784)\"><use xlink:href=\"#g50-111\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.407,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,14.564,3.784)\"><use xlink:href=\"#g50-111\"></use></g></svg>,</span> and tadpole graph <span><svg height=\"13.3128pt\" style=\"vertical-align:-4.35068pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 21.7667 13.3128\" width=\"21.7667pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.176,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,11.608,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,13.765,3.132)\"></path></g></svg>.</span> Finally, we derive the explicit formulas for the secure metric dimension of tadpole graph <span><svg height=\"13.3128pt\" style=\"vertical-align:-4.35068pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.96212 21.995 13.3128\" width=\"21.995pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.176,3.132)\"><use xlink:href=\"#g50-111\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,11.835,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,13.992,3.132)\"><use xlink:href=\"#g50-110\"></use></g></svg>,</span> subdivision of tadpole graph <span><svg height=\"13.639pt\" style=\"vertical-align:-4.35067pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 36.9554 13.639\" width=\"36.9554pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.136,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.634,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,17.81,3.132)\"><use xlink:href=\"#g50-52\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,22.242,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,24.399,3.132)\"><use xlink:href=\"#g50-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.274,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>,</span> and subdivision of tadpole graph <span><svg height=\"13.639pt\" style=\"vertical-align:-4.35067pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 37.1838 13.639\" width=\"37.1838pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-84\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.136,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.634,0)\"><use xlink:href=\"#g113-85\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,17.81,3.132)\"><use xlink:href=\"#g50-111\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,22.47,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,24.626,3.132)\"><use xlink:href=\"#g50-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.503,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span>","PeriodicalId":44178,"journal":{"name":"Advances in Operations Research","volume":"99 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/3084976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Let G = (V, E) be a connected, basic, and finite graph. A subset of V(G) is said to be a resolving set if for any y ∈ V(G), the code of y with regards to T, represented by , which is defined as , is different for various y. The dimension of G is the smallest cardinality of a resolving set and is denoted by dim(G). If, for any t ∈ V – S, there exists r ∈ S such that is a resolving set, then the resolving set S is secure. The secure metric dimension of 𝐺 is the cardinal number of the minimum secure resolving set. Determining the secure metric dimension of any given graph is an NP-complete problem. In addition, there are several uses for the metric dimension in a variety of fields, including image processing, pattern recognition, network discovery and verification, geographic routing protocols, and combinatorial optimization. In this paper, we determine the secure metric dimension of special graphs such as a globe graph , flag graph ,H- graph of path , a bistar graph , and tadpole graph . Finally, we derive the explicit formulas for the secure metric dimension of tadpole graph , subdivision of tadpole graph , and subdivision of tadpole graph .