Jaeyoun Cho, Hyunkyu Shin, Yonghan Ahn, Jongnam Ho
{"title":"The Personalized Thermal Comfort Prediction Using an MH-LSTM Neural Network Method","authors":"Jaeyoun Cho, Hyunkyu Shin, Yonghan Ahn, Jongnam Ho","doi":"10.1155/2024/2106137","DOIUrl":null,"url":null,"abstract":"As demand for indoor thermal comfort increases, occupants’ subjective thermal sensation is becoming an important indicator of the building environment. Traditional models like the predicted mean vote-based model may not be reliable for individual comfort. This study proposed the multihead long short-term memory (LSTM) model to reflect physical and environment-driven data variation. Controlled experiments were conducted with individual temperature measurements of six participants, and the collected data showed significant potential to predict individual thermal comfort using a model trained for each person. The results derived from this study can be utilized, in future, for predicting the thermal comfort and for optimizing the thermal environments using personal body temperature and surrounding environmental data in a space where mainly independent activities are performed. This study contributes to the relevant literature by suggesting a method that predicts thermal comfort based on the multihead LSTM method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2106137","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As demand for indoor thermal comfort increases, occupants’ subjective thermal sensation is becoming an important indicator of the building environment. Traditional models like the predicted mean vote-based model may not be reliable for individual comfort. This study proposed the multihead long short-term memory (LSTM) model to reflect physical and environment-driven data variation. Controlled experiments were conducted with individual temperature measurements of six participants, and the collected data showed significant potential to predict individual thermal comfort using a model trained for each person. The results derived from this study can be utilized, in future, for predicting the thermal comfort and for optimizing the thermal environments using personal body temperature and surrounding environmental data in a space where mainly independent activities are performed. This study contributes to the relevant literature by suggesting a method that predicts thermal comfort based on the multihead LSTM method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.