Control of quantum paths in harmonic generation through orthogonal fields specific frequency ratios

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Junjie Wang, Hongye Xu, Xinlei Ge
{"title":"Control of quantum paths in harmonic generation through orthogonal fields specific frequency ratios","authors":"Junjie Wang, Hongye Xu, Xinlei Ge","doi":"10.1088/1612-202x/ad3a53","DOIUrl":null,"url":null,"abstract":"By solving a two-dimensional, time-dependent Schrödinger equation, we investigate high-order harmonic generation for the <inline-formula>\n<tex-math><?CDATA $ H_2^+ $?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msubsup><mml:mi>H</mml:mi><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:msubsup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3a53ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> molecular ion in orthogonally polarized two-color laser pulses. We find that harmonic generation depends on the frequency ratio <inline-formula>\n<tex-math><?CDATA $ n = \\frac{\\omega_y}{\\omega_x} $?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:msub><mml:mi>ω</mml:mi><mml:mi>y</mml:mi></mml:msub><mml:msub><mml:mi>ω</mml:mi><mml:mi>x</mml:mi></mml:msub></mml:mfrac></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3a53ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. When the wavelength is 800 nm and <italic toggle=\"yes\">n</italic> = 1.2, the harmonic plateau becomes smoother, and the quantum orbital interference decreases. We change the fundamental wavelength and find that the harmonic spectrum exhibits a supercontinuum structure, and the quantum orbital is controllable. When the wavelength is 1600 nm and 2000 nm, and <italic toggle=\"yes\">n</italic> = 1.2, we gain a deeper understanding of the physical process of harmonics. We have provided the time-frequency distribution and the probability density of an electron wave packet picture. Next, we analyzed the impact of the carrier-envelope phase on harmonics, and we combined Lissajous figures to continue our analysis. The research results find that when the carrier-envelope phase is 0, 0.5<italic toggle=\"yes\">π</italic>, <italic toggle=\"yes\">π</italic>, and 1.5<italic toggle=\"yes\">π</italic>, the harmonic intensity becomes higher, and all exhibit a supercontinuum structure. We chose certain orders of harmonics, and isolated attosecond pulses can be synthesized.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad3a53","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By solving a two-dimensional, time-dependent Schrödinger equation, we investigate high-order harmonic generation for the H2+ molecular ion in orthogonally polarized two-color laser pulses. We find that harmonic generation depends on the frequency ratio n=ωyωx . When the wavelength is 800 nm and n = 1.2, the harmonic plateau becomes smoother, and the quantum orbital interference decreases. We change the fundamental wavelength and find that the harmonic spectrum exhibits a supercontinuum structure, and the quantum orbital is controllable. When the wavelength is 1600 nm and 2000 nm, and n = 1.2, we gain a deeper understanding of the physical process of harmonics. We have provided the time-frequency distribution and the probability density of an electron wave packet picture. Next, we analyzed the impact of the carrier-envelope phase on harmonics, and we combined Lissajous figures to continue our analysis. The research results find that when the carrier-envelope phase is 0, 0.5π, π, and 1.5π, the harmonic intensity becomes higher, and all exhibit a supercontinuum structure. We chose certain orders of harmonics, and isolated attosecond pulses can be synthesized.
通过正交场特定频率比控制谐波产生中的量子路径
通过求解与时间相关的二维薛定谔方程,我们研究了正交偏振双色激光脉冲中 H2+ 分子离子的高阶谐波产生。我们发现谐波的产生取决于频率比 n=ωyωx。当波长为 800 nm,n=1.2 时,谐波高原变得更加平滑,量子轨道干扰也会减少。我们改变基波波长,发现谐波谱呈现超连续结构,量子轨道可控。当波长为 1600 nm 和 2000 nm,n = 1.2 时,我们对谐波的物理过程有了更深入的了解。我们提供了电子波包图的时频分布和概率密度。接下来,我们分析了载波包相对谐波的影响,并结合利萨如斯图继续分析。研究结果发现,当载波包络相位为 0、0.5π、π 和 1.5π 时,谐波强度会变得更高,并且都呈现出超连续结构。我们选择一定数量级的谐波,就能合成孤立的阿秒脉冲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信