Nonlinear model of bridge bearings considering friction effect under horizontal seismic action

IF 2.1 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Dong-Hui Yang, Yong-Chang Zhang, Xu Zheng, Ting-Hua Yi, Hong-Nan Li
{"title":"Nonlinear model of bridge bearings considering friction effect under horizontal seismic action","authors":"Dong-Hui Yang, Yong-Chang Zhang, Xu Zheng, Ting-Hua Yi, Hong-Nan Li","doi":"10.1177/13694332241247917","DOIUrl":null,"url":null,"abstract":"Bearings are regarded as a crucial element that impacts the overall performance of the seismic analysis of bridges. The assessment of seismic performance in bridges heavily depends on the nonlinear features of bridge bearings. Therefore, it is essential to simulate the nonlinear mechanical behavior of bridge bearings to attain the required accuracy of seismic analysis. This paper examines the friction features of pot bearings using the Bouc-Wen hysteretic model, based on which a nonlinear model of pot bearings is proposed. The proposed model can rapidly and effectively analyze the nonlinear mechanical behaviors of bridge bearings under horizontal earthquakes by adequately simplifying the mechanical properties of these bearings. The accuracy of the model for horizontal seismic effects analysis is validated using a numerical simulation method. The simulation compares the nonlinear model seismic effects of the bearing with a linear-elastic model that ignores the bearing frictional effects under horizontal seismic action. The results demonstrated that in the proposed nonlinear model, the ratio of the composite bending moment and yield bending moment of the pier bottom section (demand capacity ratio) is lower than that of the linear elastic model, leading to a more accurate analysis of horizontal seismic effects and thus preventing overestimation of seismic consequences.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":"84 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241247917","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bearings are regarded as a crucial element that impacts the overall performance of the seismic analysis of bridges. The assessment of seismic performance in bridges heavily depends on the nonlinear features of bridge bearings. Therefore, it is essential to simulate the nonlinear mechanical behavior of bridge bearings to attain the required accuracy of seismic analysis. This paper examines the friction features of pot bearings using the Bouc-Wen hysteretic model, based on which a nonlinear model of pot bearings is proposed. The proposed model can rapidly and effectively analyze the nonlinear mechanical behaviors of bridge bearings under horizontal earthquakes by adequately simplifying the mechanical properties of these bearings. The accuracy of the model for horizontal seismic effects analysis is validated using a numerical simulation method. The simulation compares the nonlinear model seismic effects of the bearing with a linear-elastic model that ignores the bearing frictional effects under horizontal seismic action. The results demonstrated that in the proposed nonlinear model, the ratio of the composite bending moment and yield bending moment of the pier bottom section (demand capacity ratio) is lower than that of the linear elastic model, leading to a more accurate analysis of horizontal seismic effects and thus preventing overestimation of seismic consequences.
考虑水平地震作用下摩擦效应的桥梁支座非线性模型
支座被认为是影响桥梁抗震分析整体性能的关键因素。桥梁抗震性能的评估在很大程度上取决于桥梁支座的非线性特征。因此,必须模拟桥梁支座的非线性机械行为,以达到所需的抗震分析精度。本文利用 Bouc-Wen 滞后模型研究了盆式支座的摩擦特性,并在此基础上提出了盆式支座的非线性模型。通过充分简化桥梁支座的力学特性,所提出的模型可以快速有效地分析水平地震下桥梁支座的非线性力学行为。利用数值模拟方法验证了该模型在水平地震效应分析中的准确性。模拟将轴承的非线性地震效应模型与忽略水平地震作用下轴承摩擦效应的线性弹性模型进行了比较。结果表明,在所提出的非线性模型中,墩底截面的复合弯矩与屈服弯矩之比(需求能力比)低于线性弹性模型,从而能更准确地分析水平地震效应,防止高估地震后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Structural Engineering
Advances in Structural Engineering 工程技术-工程:土木
CiteScore
5.00
自引率
11.50%
发文量
230
审稿时长
2.3 months
期刊介绍: Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信