Constant-Depth Arithmetic Circuits for Linear Algebra Problems

Robert Andrews, Avi Wigderson
{"title":"Constant-Depth Arithmetic Circuits for Linear Algebra Problems","authors":"Robert Andrews, Avi Wigderson","doi":"arxiv-2404.10839","DOIUrl":null,"url":null,"abstract":"We design polynomial size, constant depth (namely, $\\mathsf{AC}^0$)\narithmetic formulae for the greatest common divisor (GCD) of two polynomials,\nas well as the related problems of the discriminant, resultant, B\\'ezout\ncoefficients, squarefree decomposition, and the inversion of structured\nmatrices like Sylvester and B\\'ezout matrices. Our GCD algorithm extends to any\nnumber of polynomials. Previously, the best known arithmetic formulae for these\nproblems required super-polynomial size, regardless of depth. These results are based on new algorithmic techniques to compute various\nsymmetric functions in the roots of polynomials, as well as manipulate the\nmultiplicities of these roots, without having access to them. These techniques\nallow $\\mathsf{AC}^0$ computation of a large class of linear and polynomial\nalgebra problems, which include the above as special cases. We extend these techniques to problems whose inputs are multivariate\npolynomials, which are represented by $\\mathsf{AC}^0$ arithmetic circuits. Here\ntoo we solve problems such as computing the GCD and squarefree decomposition in\n$\\mathsf{AC}^0$.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.10839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We design polynomial size, constant depth (namely, $\mathsf{AC}^0$) arithmetic formulae for the greatest common divisor (GCD) of two polynomials, as well as the related problems of the discriminant, resultant, B\'ezout coefficients, squarefree decomposition, and the inversion of structured matrices like Sylvester and B\'ezout matrices. Our GCD algorithm extends to any number of polynomials. Previously, the best known arithmetic formulae for these problems required super-polynomial size, regardless of depth. These results are based on new algorithmic techniques to compute various symmetric functions in the roots of polynomials, as well as manipulate the multiplicities of these roots, without having access to them. These techniques allow $\mathsf{AC}^0$ computation of a large class of linear and polynomial algebra problems, which include the above as special cases. We extend these techniques to problems whose inputs are multivariate polynomials, which are represented by $\mathsf{AC}^0$ arithmetic circuits. Here too we solve problems such as computing the GCD and squarefree decomposition in $\mathsf{AC}^0$.
线性代数问题的定深算术电路
我们为两个多项式的最大公约数(GCD)设计了多项式大小、恒定深度(即 $\mathsf{AC}^0$)的算术公式,以及相关的判别式、结果式、B\'ezoutcoefficients、无平方分解和结构矩阵(如 Sylvester 和 B\'ezout 矩阵)的反转问题。我们的 GCD 算法可以扩展到任意数量的多项式。在此之前,针对这些问题的已知最佳算术公式需要超多项式大小,与深度无关。这些结果基于新的算法技术,可以计算多项式根中的各种对称函数,以及在无法访问这些根的情况下处理它们的乘法。这些技术允许 $\mathsf{AC}^0$ 计算一大类线性和多项式代数问题,其中包括上述特例。我们将这些技术扩展到输入为多元多项式的问题,这些问题由 $\mathsf{AC}^0$ 算术电路表示。我们还解决了诸如计算 GCD 和 $\mathsf{AC}^0$ 中的无平方分解等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信