Dynamic model of high-speed maglev train-guideway bridge system with a nonlinear suspension controller

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiumeng Bu, Lidong Wang, Yan Han, Hanyun Liu, Peng Hu, CS Cai
{"title":"Dynamic model of high-speed maglev train-guideway bridge system with a nonlinear suspension controller","authors":"Xiumeng Bu, Lidong Wang, Yan Han, Hanyun Liu, Peng Hu, CS Cai","doi":"10.1177/13694332241247921","DOIUrl":null,"url":null,"abstract":"To improve the anti-interference ability of maglev trains, a dynamic model of the high-speed maglev train with a nonlinear suspension controller for the guideway system is proposed in this paper. Based on the nonlinear characteristics of the magnetic suspension system, a nonlinear decoupling controller is designed using the feedback linearization theory. Then, a high-speed maglev train model is refined with a guideway coupling system, consisting of a maglev train simulated as a multi-body dynamics model with 537 degrees of freedom and a spatial finite element model of the guideway. Taking the Shanghai high-speed maglev train as an example, the correctness of the computational model is verified by comparing the modeling results with field measurement data, and the control effectiveness of the nonlinear controllers and the traditional PD controllers is compared considering different train speeds and disturbance forces. The results show that the suspension gap under the decoupling control is smaller than that under the PD control during the train operations. Under the same disturbance force, the decoupling control exhibits better control performance than the PD control. The variation amplitudes of the magnetic pole gaps are generally linearly related to the disturbance force.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241247921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the anti-interference ability of maglev trains, a dynamic model of the high-speed maglev train with a nonlinear suspension controller for the guideway system is proposed in this paper. Based on the nonlinear characteristics of the magnetic suspension system, a nonlinear decoupling controller is designed using the feedback linearization theory. Then, a high-speed maglev train model is refined with a guideway coupling system, consisting of a maglev train simulated as a multi-body dynamics model with 537 degrees of freedom and a spatial finite element model of the guideway. Taking the Shanghai high-speed maglev train as an example, the correctness of the computational model is verified by comparing the modeling results with field measurement data, and the control effectiveness of the nonlinear controllers and the traditional PD controllers is compared considering different train speeds and disturbance forces. The results show that the suspension gap under the decoupling control is smaller than that under the PD control during the train operations. Under the same disturbance force, the decoupling control exhibits better control performance than the PD control. The variation amplitudes of the magnetic pole gaps are generally linearly related to the disturbance force.
带非线性悬挂控制器的高速磁悬浮列车导轨桥系统动态模型
为了提高磁悬浮列车的抗干扰能力,本文提出了一种高速磁悬浮列车的动态模型,并为导轨系统设计了一个非线性悬浮控制器。根据磁悬浮系统的非线性特性,利用反馈线性化理论设计了非线性解耦控制器。然后,利用导轨耦合系统完善了高速磁悬浮列车模型,该模型由具有 537 个自由度的多体动力学模型模拟的磁悬浮列车和导轨空间有限元模型组成。以上海高速磁悬浮列车为例,通过将建模结果与现场测量数据进行比较,验证了计算模型的正确性,并比较了非线性控制器和传统 PD 控制器在不同列车速度和干扰力下的控制效果。结果表明,在列车运行过程中,解耦控制下的悬挂间隙小于 PD 控制下的悬挂间隙。在干扰力相同的情况下,解耦控制的控制性能优于脉动差分控制。磁极间隙的变化幅度一般与干扰力成线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信