Weighted Geometric Mean, Minimum Mediated Set, and Optimal Simple Second-Order Cone Representation

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Jie Wang
{"title":"Weighted Geometric Mean, Minimum Mediated Set, and Optimal Simple Second-Order Cone Representation","authors":"Jie Wang","doi":"10.1137/22m1531257","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1490-1514, June 2024. <br/> Abstract. We study optimal simple second-order cone representations (a particular subclass of second-order cone representations) for weighted geometric means, which turns out to be closely related to minimum mediated sets. Several lower bounds and upper bounds on the size of optimal simple second-order cone representations are proved. In the case of bivariate weighted geometric means (equivalently, one-dimensional mediated sets), we are able to prove the exact size of an optimal simple second-order cone representation and give an algorithm to compute one. In the genenal case, fast heuristic algorithms and traversal algorithms are proposed to compute an approximately optimal simple second-order cone representation. Finally, applications to polynomial optimization, matrix optimization, and quantum information are provided.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1531257","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 2, Page 1490-1514, June 2024.
Abstract. We study optimal simple second-order cone representations (a particular subclass of second-order cone representations) for weighted geometric means, which turns out to be closely related to minimum mediated sets. Several lower bounds and upper bounds on the size of optimal simple second-order cone representations are proved. In the case of bivariate weighted geometric means (equivalently, one-dimensional mediated sets), we are able to prove the exact size of an optimal simple second-order cone representation and give an algorithm to compute one. In the genenal case, fast heuristic algorithms and traversal algorithms are proposed to compute an approximately optimal simple second-order cone representation. Finally, applications to polynomial optimization, matrix optimization, and quantum information are provided.
加权几何平均、最小中介集和最佳简单二阶锥体表示法
SIAM 优化期刊》,第 34 卷第 2 期,第 1490-1514 页,2024 年 6 月。 摘要。我们研究了加权几何平均数的最优简单二阶锥表示(二阶锥表示的一个特殊子类),它与最小中介集密切相关。证明了最优简单二阶锥表示大小的几个下界和上界。在双变量加权几何平均数(等价于一维中介集)的情况下,我们能够证明最优简单二阶圆锥表示的精确大小,并给出了计算最优简单二阶圆锥表示的算法。在一般情况下,我们提出了快速启发式算法和遍历算法,以计算近似最优的简单二阶锥表示。最后,还介绍了多项式优化、矩阵优化和量子信息的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信