Joint Functional Independence of the Riemann Zeta-Function

Maxim Korolev, Antanas Laurinčikas
{"title":"Joint Functional Independence of the Riemann Zeta-Function","authors":"Maxim Korolev, Antanas Laurinčikas","doi":"10.1007/s13226-024-00585-5","DOIUrl":null,"url":null,"abstract":"<p>By the Ostrowski theorem, the Riemann zeta-function <span>\\(\\zeta (s)\\)</span> does not satisfy any algebraic-differential equation. Voronin proved that the function <span>\\(\\zeta (s)\\)</span> does not satisfy algebraic-differential equation with continuous coefficients. In the paper, a joint generalization of the Voronin theorem is given, i. e., that a collection <span>\\((\\zeta (s_1), \\dots , \\zeta (s_r))\\)</span> does not satisfy a certain algebraic-differential equation with continuous coefficients.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00585-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By the Ostrowski theorem, the Riemann zeta-function \(\zeta (s)\) does not satisfy any algebraic-differential equation. Voronin proved that the function \(\zeta (s)\) does not satisfy algebraic-differential equation with continuous coefficients. In the paper, a joint generalization of the Voronin theorem is given, i. e., that a collection \((\zeta (s_1), \dots , \zeta (s_r))\) does not satisfy a certain algebraic-differential equation with continuous coefficients.

黎曼 Zeta 函数的联合函数独立性
根据奥斯特洛夫斯基定理,黎曼zeta函数\(\zeta (s)\)不满足任何代数微分方程。沃罗宁证明了函数 (\zeta (s)\) 不满足具有连续系数的代数微分方程。本文给出了沃罗宁定理的联合广义,即集合 \((\zeta (s_1), \dots , \zeta (s_r))\) 不满足某个带连续系数的代数微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信