{"title":"A Cyclic Random Motion in $$\\mathbb {R}^3$$ Driven by Geometric Counting Processes","authors":"Antonella Iuliano, Gabriella Verasani","doi":"10.1007/s11009-024-10083-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the random motion of a particle that moves with constant velocity in <span>\\(\\mathbb {R}^3\\)</span>. The particle can move along four different directions that are attained cyclically. It follows that the support of the stochastic process describing the particle’s position at a fixed time is a tetrahedron. We assume that the sequence of sojourn times along each direction follows a Geometric Counting Process (GCP). When the initial condition is fixed, we obtain the explicit form of the probability law of the process, for the particle’s position. We also investigate the limiting behavior of the related probability density when the intensities of the four GCPs tend to infinity. Furthermore, we show that the process does not admit a stationary density. Finally, we introduce the first-passage-time problem for the first component of the process through a constant positive boundary providing the bases for future developments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10083-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the random motion of a particle that moves with constant velocity in \(\mathbb {R}^3\). The particle can move along four different directions that are attained cyclically. It follows that the support of the stochastic process describing the particle’s position at a fixed time is a tetrahedron. We assume that the sequence of sojourn times along each direction follows a Geometric Counting Process (GCP). When the initial condition is fixed, we obtain the explicit form of the probability law of the process, for the particle’s position. We also investigate the limiting behavior of the related probability density when the intensities of the four GCPs tend to infinity. Furthermore, we show that the process does not admit a stationary density. Finally, we introduce the first-passage-time problem for the first component of the process through a constant positive boundary providing the bases for future developments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.