{"title":"Kalman filter with impulse noised outliers: a robust sequential algorithm to filter data with a large number of outliers","authors":"Bertrand Cloez, Bénédicte Fontez, Eliel González-García, Isabelle Sanchez","doi":"10.1515/ijb-2023-0065","DOIUrl":null,"url":null,"abstract":"Impulse noised outliers are data points that differ significantly from other observations. They are generally removed from the data set through local regression or the Kalman filter algorithm. However, these methods, or their generalizations, are not well suited when the number of outliers is of the same order as the number of low-noise data (often called <jats:italic>nominal measurement</jats:italic>). In this article, we propose a new model for impulsed noise outliers. It is based on a hierarchical model and a simple linear Gaussian process as with the Kalman Filter. We present a fast forward-backward algorithm to filter and smooth sequential data and which also detects these outliers. We compare the robustness and efficiency of this algorithm with classical methods. Finally, we apply this method on a real data set from a Walk Over Weighing system admitting around 60 % of outliers. For this application, we further develop an (explicit) EM algorithm to calibrate some algorithm parameters.","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0065","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Impulse noised outliers are data points that differ significantly from other observations. They are generally removed from the data set through local regression or the Kalman filter algorithm. However, these methods, or their generalizations, are not well suited when the number of outliers is of the same order as the number of low-noise data (often called nominal measurement). In this article, we propose a new model for impulsed noise outliers. It is based on a hierarchical model and a simple linear Gaussian process as with the Kalman Filter. We present a fast forward-backward algorithm to filter and smooth sequential data and which also detects these outliers. We compare the robustness and efficiency of this algorithm with classical methods. Finally, we apply this method on a real data set from a Walk Over Weighing system admitting around 60 % of outliers. For this application, we further develop an (explicit) EM algorithm to calibrate some algorithm parameters.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.