Reducing Subspaces of Toeplitz Operators Induced by a Class of Non-analytic Monomials over the Unit Ball

IF 0.8 3区 数学 Q2 MATHEMATICS
Yan Yue Shi, Bo Zhang, Xu Tang, Yu Feng Lu
{"title":"Reducing Subspaces of Toeplitz Operators Induced by a Class of Non-analytic Monomials over the Unit Ball","authors":"Yan Yue Shi,&nbsp;Bo Zhang,&nbsp;Xu Tang,&nbsp;Yu Feng Lu","doi":"10.1007/s10114-024-2709-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we describe the minimal reducing subspaces of Toeplitz operators induced by non-analytic monomials on the weighted Bergman spaces and Dirichlet spaces over the unit ball <span>\\({\\mathbb{B}_2}\\)</span>. It is proved that each minimal reducing subspace <i>M</i> is finite dimensional, and if dim <i>M</i> ≥ 3, then <i>M</i> is induced by a monomial. Furthermore, the structure of commutant algebra <span>\\(\\nu ({T_{\\overline w {N_z}N}}): = {\\{ M_{{w^N}}^ * {M_{{z^N}}},M_{{z^N}}^ * {M_{{w^N}}}\\} ^\\prime }\\)</span> is determined by <i>N</i> and the two dimensional minimal reducing subspaces of <span>\\({T_{\\overline w {N_z}N}}\\)</span>. We also give some interesting examples.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 7","pages":"1767 - 1777"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2709-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we describe the minimal reducing subspaces of Toeplitz operators induced by non-analytic monomials on the weighted Bergman spaces and Dirichlet spaces over the unit ball \({\mathbb{B}_2}\). It is proved that each minimal reducing subspace M is finite dimensional, and if dim M ≥ 3, then M is induced by a monomial. Furthermore, the structure of commutant algebra \(\nu ({T_{\overline w {N_z}N}}): = {\{ M_{{w^N}}^ * {M_{{z^N}}},M_{{z^N}}^ * {M_{{w^N}}}\} ^\prime }\) is determined by N and the two dimensional minimal reducing subspaces of \({T_{\overline w {N_z}N}}\). We also give some interesting examples.

单位球上一类非解析单项式引起的托普利兹算子的还原子空间
本文描述了单位球上加权伯格曼空间和德里赫利特空间上的非解析单项式诱导的托普利兹算子的最小还原子空间(({\mathbb{B}_2}\))。证明了每个最小还原子空间 M 都是有限维的,并且如果 dim M ≥ 3,那么 M 是由单项式诱导的。此外,换元代数的结构(\nu ({T_{\overline w {N_z}N}}): = {\{ M_{{w^N}}^ * {M_{{z^N}}},M_{{z^N}}^ * {M_{{w^N}}}\}}^\prime }\) 由 N 和 \({T_{/overline w {N_z}N}}\) 的二维最小还原子空间决定。我们还给出了一些有趣的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信