Weipeng Yao, Motoaki Nakatsutsumi, Sébastien Buffechoux, Patrizio Antici, Marco Borghesi, Andrea Ciardi, Sophia N. Chen, Emmanuel d’Humières, Laurent Gremillet, Robert Heathcote, Vojtěch Horný, Paul McKenna, Mark N. Quinn, Lorenzo Romagnani, Ryan Royle, Gianluca Sarri, Yasuhiko Sentoku, Hans-Peter Schlenvoigt, Toma Toncian, Olivier Tresca, Laura Vassura, Oswald Willi, Julien Fuchs
{"title":"Optimizing laser coupling, matter heating, and particle acceleration from solids using multiplexed ultraintense lasers","authors":"Weipeng Yao, Motoaki Nakatsutsumi, Sébastien Buffechoux, Patrizio Antici, Marco Borghesi, Andrea Ciardi, Sophia N. Chen, Emmanuel d’Humières, Laurent Gremillet, Robert Heathcote, Vojtěch Horný, Paul McKenna, Mark N. Quinn, Lorenzo Romagnani, Ryan Royle, Gianluca Sarri, Yasuhiko Sentoku, Hans-Peter Schlenvoigt, Toma Toncian, Olivier Tresca, Laura Vassura, Oswald Willi, Julien Fuchs","doi":"10.1063/5.0184919","DOIUrl":null,"url":null,"abstract":"Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations. Here, we investigate how to optimize their coupling with solid targets. Experimentally, we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside. The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations, revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection, which is one possible mechanism to boost electron energization. In addition, the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation. Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0184919","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations. Here, we investigate how to optimize their coupling with solid targets. Experimentally, we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside. The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations, revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection, which is one possible mechanism to boost electron energization. In addition, the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation. Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.