{"title":"Equivariant localization in the theory of Z-stability for Kähler manifolds","authors":"Alexia Corradini","doi":"10.1142/s0129167x24500265","DOIUrl":null,"url":null,"abstract":"<p>We apply equivariant localization to the theory of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>Z</mi></math></span><span></span>-stability and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>Z</mi></math></span><span></span>-critical metrics on a Kähler manifold <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>α</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is a Kähler class. We show that the invariants used to determine <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>Z</mi></math></span><span></span>-stability of the manifold, which are integrals over test configurations, can be written as a product of equivariant classes, hence equivariant localization can be applied. We also study the existence of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>Z</mi></math></span><span></span>-critical Kähler metrics in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>, whose existence is conjectured to be equivalent to <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>Z</mi></math></span><span></span>-stability of <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>α</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. In particular, we study a class of invariants that give an obstruction to the existence of such metrics. Then we show that these invariants can also be written as a product of equivariant classes. From this we give a new, more direct proof of an existing result: the former invariants determining <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>Z</mi></math></span><span></span>-stability on a test configuration are equal to the latter invariants related to the existence of <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>Z</mi></math></span><span></span>-critical metrics on the central fibre of the test configuration. This provides a new approach from which to derive the <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>Z</mi></math></span><span></span>-critical equation.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":"302 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24500265","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We apply equivariant localization to the theory of -stability and -critical metrics on a Kähler manifold , where is a Kähler class. We show that the invariants used to determine -stability of the manifold, which are integrals over test configurations, can be written as a product of equivariant classes, hence equivariant localization can be applied. We also study the existence of -critical Kähler metrics in , whose existence is conjectured to be equivalent to -stability of . In particular, we study a class of invariants that give an obstruction to the existence of such metrics. Then we show that these invariants can also be written as a product of equivariant classes. From this we give a new, more direct proof of an existing result: the former invariants determining -stability on a test configuration are equal to the latter invariants related to the existence of -critical metrics on the central fibre of the test configuration. This provides a new approach from which to derive the -critical equation.
我们将等变局部化应用于凯勒流形(X,α)上的Z稳定性和Z临界度量理论,其中α是一个凯勒类。我们证明,用于确定流形的 Z 稳定性的不变量(即测试配置的积分)可以写成等变类的乘积,因此等变局部化可以应用。我们还研究了 α 中 Z 临界凯勒度量的存在性,并猜想其存在性等同于 (X,α) 的 Z 稳定性。我们特别研究了一类阻碍此类度量存在的不变式。然后,我们证明这些不变式也可以写成等变类的乘积。由此,我们给出了一个现有结果的新的、更直接的证明:决定测试构型上 Z 稳定性的前一个不变式等于与测试构型中心纤维上 Z 临界度量的存在相关的后一个不变式。这为推导 Z 临界方程提供了一种新方法。
期刊介绍:
The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.