{"title":"Entropic relations for indistinguishable quantum particles","authors":"Marius Lemm","doi":"10.1088/1742-5468/ad343a","DOIUrl":null,"url":null,"abstract":"The von Neumann entropy of a <italic toggle=\"yes\">k</italic>-body-reduced density matrix <italic toggle=\"yes\">γ</italic>\n<sub>\n<italic toggle=\"yes\">k</italic>\n</sub> quantifies the entanglement between <italic toggle=\"yes\">k</italic> quantum particles and the remaining ones. In this paper, we rigorously prove general properties of this entanglement entropy as a function of <italic toggle=\"yes\">k</italic>; it is concave for all <inline-formula>\n<tex-math><?CDATA $1\\unicode{x2A7D} k\\unicode{x2A7D} N$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mn>1</mml:mn><mml:mtext>⩽</mml:mtext><mml:mi>k</mml:mi><mml:mtext>⩽</mml:mtext><mml:mi>N</mml:mi></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad343aieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and non-decreasing until the midpoint <inline-formula>\n<tex-math><?CDATA $k\\unicode{x2A7D} \\lfloor{N/2} \\rfloor$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>k</mml:mi><mml:mtext>⩽</mml:mtext><mml:mo fence=\"false\" stretchy=\"false\">⌊</mml:mo><mml:mrow><mml:mi>N</mml:mi><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⌋</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"jstatad343aieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The results hold for indistinguishable quantum particles and are independent of the statistics.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"61 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad343a","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The von Neumann entropy of a k-body-reduced density matrix γk quantifies the entanglement between k quantum particles and the remaining ones. In this paper, we rigorously prove general properties of this entanglement entropy as a function of k; it is concave for all 1⩽k⩽N and non-decreasing until the midpoint k⩽⌊N/2⌋. The results hold for indistinguishable quantum particles and are independent of the statistics.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina