Heterogeneous mean-field analysis of the generalized Lotka-Volterra model on a network

Fabián Aguirre-López
{"title":"Heterogeneous mean-field analysis of the generalized Lotka-Volterra model on a network","authors":"Fabián Aguirre-López","doi":"arxiv-2404.11164","DOIUrl":null,"url":null,"abstract":"We study the dynamics of the generalized Lotka-Volterra model with a network\nstructure. Performing a high connectivity expansion for graphs, we write down a\nmean-field dynamical theory that incorporates degree heterogeneity. This allows\nus to describe the fixed points of the model in terms of a few simple order\nparameters. We extend the analysis even for diverging abundances, using a\nmapping to the replicator model. With this we present a unified approach for\nboth cooperative and competitive systems that display complementary behaviors.\nIn particular we show the central role of an order parameter called the\ncritical degree, $g_c$. In the competitive regime $g_c$ serves to distinguish\nhigh degree nodes that are more likely to go extinct, while in the cooperative\nregime it has the reverse role, it will determine the low degree nodes that\ntend to go relatively extinct.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.11164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the dynamics of the generalized Lotka-Volterra model with a network structure. Performing a high connectivity expansion for graphs, we write down a mean-field dynamical theory that incorporates degree heterogeneity. This allows us to describe the fixed points of the model in terms of a few simple order parameters. We extend the analysis even for diverging abundances, using a mapping to the replicator model. With this we present a unified approach for both cooperative and competitive systems that display complementary behaviors. In particular we show the central role of an order parameter called the critical degree, $g_c$. In the competitive regime $g_c$ serves to distinguish high degree nodes that are more likely to go extinct, while in the cooperative regime it has the reverse role, it will determine the low degree nodes that tend to go relatively extinct.
网络上广义洛特卡-伏特拉模型的异质均场分析
我们研究了具有网络结构的广义洛特卡-伏特拉模型的动力学。通过对图进行高连接性扩展,我们写出了包含度异质性的均场动力学理论。这使得我们可以用几个简单的阶参数来描述模型的定点。我们利用复制器模型的映射,扩展了对发散丰度的分析。因此,我们提出了一种同时适用于合作和竞争系统的统一方法,这两种系统显示出互补的行为。在竞争系统中,g_c$ 的作用是区分更有可能消亡的高程度节点,而在合作系统中,它的作用正好相反,它将决定倾向于相对消亡的低程度节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信