Lidar-based classification and detection system for drivable area on roads

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rongkun Wei, Yunsong Wei, Yingxue Xiao, Rong Ma
{"title":"Lidar-based classification and detection system for drivable area on roads","authors":"Rongkun Wei, Yunsong Wei, Yingxue Xiao, Rong Ma","doi":"10.1177/09544070241244414","DOIUrl":null,"url":null,"abstract":"Separating the drivable and non- drivable areas on semi-structured and unstructured roads is an important task for autonomous vehicles to safely and avoid obstacles. Semi structured and unstructured roads have different intensities, normal vector angles, and curvature information than the background, and this paves the way for the design and development of an efficient detection system for drivable areas on this roads. In this paper, an effective method for detecting drivable areas is proposed that is based on important indicators of an experimental vehicles. This method calculate the information gain of features is calculated firstly to determine the sequence of feature processing. On the basis of this sequence calculate the maximum inter-class variance of features, and combined with the specific indicators of the experimental vehicle to realize the detection of drivable areas. Finally, the performance of the method is evaluated in terms of average precision, recall, and detection accuracy, and compared with the performance of existing road detection methods, including the K-nearest-neighbors classifier and the random forest classifier methods. The experimental results show that the average precision, recall, and detection accuracy of the system are 96.19%, 96.89%, and 96.72%, respectively. The method proposed here can effectively identify and classify drivable areas on semi structured and unstructured roads.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241244414","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Separating the drivable and non- drivable areas on semi-structured and unstructured roads is an important task for autonomous vehicles to safely and avoid obstacles. Semi structured and unstructured roads have different intensities, normal vector angles, and curvature information than the background, and this paves the way for the design and development of an efficient detection system for drivable areas on this roads. In this paper, an effective method for detecting drivable areas is proposed that is based on important indicators of an experimental vehicles. This method calculate the information gain of features is calculated firstly to determine the sequence of feature processing. On the basis of this sequence calculate the maximum inter-class variance of features, and combined with the specific indicators of the experimental vehicle to realize the detection of drivable areas. Finally, the performance of the method is evaluated in terms of average precision, recall, and detection accuracy, and compared with the performance of existing road detection methods, including the K-nearest-neighbors classifier and the random forest classifier methods. The experimental results show that the average precision, recall, and detection accuracy of the system are 96.19%, 96.89%, and 96.72%, respectively. The method proposed here can effectively identify and classify drivable areas on semi structured and unstructured roads.
基于激光雷达的道路可行驶区域分类和检测系统
在半结构化和非结构化道路上区分可驾驶区域和不可驾驶区域是自动驾驶汽车安全避开障碍物的一项重要任务。半结构化道路和非结构化道路的强度、法向量角度和曲率信息与背景不同,这就为设计和开发高效的可驾驶区域检测系统铺平了道路。本文根据实验车辆的重要指标,提出了一种检测可驾驶区域的有效方法。该方法首先计算特征的信息增益,以确定特征处理的顺序。在此基础上计算特征的最大类间方差,并结合实验车辆的具体指标实现对可驾驶区域的检测。最后,从平均精度、召回率和检测精度三个方面对该方法的性能进行了评估,并与现有的道路检测方法(包括 K-最近邻分类器和随机森林分类器方法)的性能进行了比较。实验结果表明,系统的平均精度、召回率和检测准确率分别为 96.19%、96.89% 和 96.72%。本文提出的方法能有效识别半结构化和非结构化道路上的可驾驶区域并对其进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信