Range inclusion and diagonalization of complex symmetric operators

Cun Wang, Jiayi Zhao, Sen Zhu
{"title":"Range inclusion and diagonalization of complex symmetric operators","authors":"Cun Wang, Jiayi Zhao, Sen Zhu","doi":"10.4153/s0008414x24000294","DOIUrl":null,"url":null,"abstract":"<p>We consider the range inclusion and the diagonalization in the Jordan algebra <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}_C$</span></span></img></span></span> of <span>C</span>-symmetric operators, that are, bounded linear operators <span>T</span> satisfying <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$CTC =T^{*}$</span></span></img></span></span>, where <span>C</span> is a conjugation on a separable complex Hilbert space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal H$</span></span></img></span></span>. For <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$T\\in \\mathcal {S}_C$</span></span></img></span></span>, we aim to describe the set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$C_{\\mathcal {R}(T)}$</span></span></img></span></span> of those operators <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$A\\in \\mathcal {S}_C$</span></span></img></span></span> satisfying the range inclusion <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {R}(A)\\subset \\mathcal {R}(T)$</span></span></img></span></span>. It is proved that (i) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$C_{\\mathcal {R}(T)}=T\\mathcal {S}_C T$</span></span></img></span></span> if and only if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {R}(T)$</span></span></img></span></span> is closed, (ii) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {C_{\\mathcal {R}(T)}}=\\overline {T\\mathcal {S}_C T}$</span></span></img></span></span>, and (iii) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$C_{\\overline {\\mathcal {R}(T)}}$</span></span></span></span> is the closure of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$C_{\\mathcal {R}(T)}$</span></span></span></span> in the strong operator topology. Also, we extend the classical Weyl–von Neumann Theorem to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}_C$</span></span></span></span>, showing that every self-adjoint operator in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}_C$</span></span></span></span> is the sum of a diagonal operator in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal {S}_C$</span></span></span></span> and a compact operator with arbitrarily small Schatten <span>p</span>-norm for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240417112820850-0588:S0008414X24000294:S0008414X24000294_inline16.png\"/><span data-mathjax-type=\"texmath\"><span>$p\\in (1,\\infty )$</span></span></span></span>.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"266 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the range inclusion and the diagonalization in the Jordan algebra Abstract Image$\mathcal {S}_C$ of C-symmetric operators, that are, bounded linear operators T satisfying Abstract Image$CTC =T^{*}$, where C is a conjugation on a separable complex Hilbert space Abstract Image$\mathcal H$. For Abstract Image$T\in \mathcal {S}_C$, we aim to describe the set Abstract Image$C_{\mathcal {R}(T)}$ of those operators Abstract Image$A\in \mathcal {S}_C$ satisfying the range inclusion Abstract Image$\mathcal {R}(A)\subset \mathcal {R}(T)$. It is proved that (i) Abstract Image$C_{\mathcal {R}(T)}=T\mathcal {S}_C T$ if and only if Abstract Image$\mathcal {R}(T)$ is closed, (ii) Abstract Image$\overline {C_{\mathcal {R}(T)}}=\overline {T\mathcal {S}_C T}$, and (iii) Abstract Image$C_{\overline {\mathcal {R}(T)}}$ is the closure of Abstract Image$C_{\mathcal {R}(T)}$ in the strong operator topology. Also, we extend the classical Weyl–von Neumann Theorem to Abstract Image$\mathcal {S}_C$, showing that every self-adjoint operator in Abstract Image$\mathcal {S}_C$ is the sum of a diagonal operator in Abstract Image$\mathcal {S}_C$ and a compact operator with arbitrarily small Schatten p-norm for Abstract Image$p\in (1,\infty )$.

复对称算子的范围包含和对角化
我们考虑 C 对称算子(即满足 $CTC =T^{*}$ 的有界线性算子 T)在约旦代数 $\mathcal {S}_C$ 中的范围包含和对角化,其中 C 是可分离复希尔伯特空间 $\mathcal H$ 上的共轭。对于 \mathcal {S}_C$ 中的 $T,我们的目的是描述那些满足范围包含 $\mathcal {R}(A)\subset \mathcal {R}(T)$ 的算子 $A\in \mathcal {S}_C$ 的集合 $C_{/mathcal {R}(T)}$ 。证明了(i) $C_{\mathcal {R}(T)}=T\mathcal {S}_C T$ 当且仅当 $\mathcal {R}(T)$ 是封闭的,(ii) $\overline {C_{\mathcal {R}(T)}}=\overline {T\mathcal {S}_C T}$、和 (iii) $C_{overline {\mathcal {R}(T)}}$ 是强算子拓扑中 $C_{\mathcal {R}(T)}$ 的闭包。同时,我们将经典的韦尔-冯-诺依曼定理扩展到 $\mathcal {S}_C$ ,证明了 $\mathcal {S}_C$ 中的每一个自相关算子都是 $\mathcal {S}_C$ 中的对角算子和一个在 $p\in (1,\infty )$ 条件下具有任意小的 Schatten p-norm 的紧凑算子之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信