Probing the Oxidation State of Ocean Worlds with SUDA: Fe (ii) and Fe (iii) in Ice Grains

IF 3.8 Q2 ASTRONOMY & ASTROPHYSICS
Maryse Napoleoni, Lucía Hortal Sánchez, Nozair Khawaja, Bernd Abel, Christopher R. Glein, Jon K. Hillier, Frank Postberg
{"title":"Probing the Oxidation State of Ocean Worlds with SUDA: Fe (ii) and Fe (iii) in Ice Grains","authors":"Maryse Napoleoni, Lucía Hortal Sánchez, Nozair Khawaja, Bernd Abel, Christopher R. Glein, Jon K. Hillier, Frank Postberg","doi":"10.3847/psj/ad2462","DOIUrl":null,"url":null,"abstract":"Characterizing the geochemistry of Europa and Enceladus is a key step for astrobiology investigations looking for evidence of life in their subsurface oceans. Transition metals with several oxidation states, such as iron, may be tracers of the oxidation state of icy ocean moon interiors. Their detection, as well as the characterization of their oxidation states, on the moons’ (plume) ice grains would bring valuable new information about the geochemistry of both the subsurface oceans and surface processes. Impact ionization mass spectrometers such as the SUDA instrument on board Europa Clipper can analyze ice grains ejected from icy moons’ surfaces and detect ocean-derived salts therein. Here we record mass spectra analogs for SUDA using the Laser Induced Liquid Beam Ion Desorption technique for Fe<sup>2+</sup> and Fe<sup>3+</sup> salts (both sulfates and chlorides). We show that impact ionization mass spectrometers have the capability to detect and differentiate ferrous (Fe<sup>2+</sup>) from ferric (Fe<sup>3+</sup>) ions in both cation and anion modes owing to their tendency to form distinct ionic complexes with characteristic spectral features. Peaks bearing Fe<sup>3+</sup>, such as [Fe<sup>3+</sup> (OH)<sub>2</sub>]<sup>+</sup> and [Fe<sup>3+</sup> (OH)<sub>\n<italic toggle=\"yes\">a</italic>\n</sub> Cl<sub>\n<italic toggle=\"yes\">b</italic>\n</sub>]<sup>−</sup>, are particularly important to discriminate between the two oxidation states of iron in the sample. The recorded analog spectra may allow the characterization of the oxidation state of the oceans of Europa and Enceladus with implications for hydrothermal processes and potential metabolic pathways for life forms in their subsurface oceans.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"11 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad2462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing the geochemistry of Europa and Enceladus is a key step for astrobiology investigations looking for evidence of life in their subsurface oceans. Transition metals with several oxidation states, such as iron, may be tracers of the oxidation state of icy ocean moon interiors. Their detection, as well as the characterization of their oxidation states, on the moons’ (plume) ice grains would bring valuable new information about the geochemistry of both the subsurface oceans and surface processes. Impact ionization mass spectrometers such as the SUDA instrument on board Europa Clipper can analyze ice grains ejected from icy moons’ surfaces and detect ocean-derived salts therein. Here we record mass spectra analogs for SUDA using the Laser Induced Liquid Beam Ion Desorption technique for Fe2+ and Fe3+ salts (both sulfates and chlorides). We show that impact ionization mass spectrometers have the capability to detect and differentiate ferrous (Fe2+) from ferric (Fe3+) ions in both cation and anion modes owing to their tendency to form distinct ionic complexes with characteristic spectral features. Peaks bearing Fe3+, such as [Fe3+ (OH)2]+ and [Fe3+ (OH) a Cl b ], are particularly important to discriminate between the two oxidation states of iron in the sample. The recorded analog spectra may allow the characterization of the oxidation state of the oceans of Europa and Enceladus with implications for hydrothermal processes and potential metabolic pathways for life forms in their subsurface oceans.
用 SUDA 探测海洋世界的氧化态:冰粒中的铁(ii)和铁(iii)
确定木卫二和土卫二的地球化学特征是天体生物学研究寻找其地表下海洋中生命证据的关键一步。铁等具有多种氧化态的过渡金属可能是冰洋卫星内部氧化态的示踪剂。在卫星(羽流)冰粒上探测到这些金属,并确定其氧化态的特征,将为了解地下海洋和表面过程的地球化学提供宝贵的新信息。撞击电离质谱仪(如欧罗巴号快船上的 SUDA 仪器)可以分析从冰卫星表面喷射出的冰粒,并探测其中的海洋衍生盐。在这里,我们利用激光诱导液束离子解吸技术记录了SUDA对Fe2+和Fe3+盐类(包括硫酸盐和氯化物)的类似质谱。我们的研究表明,撞击电离质谱仪有能力检测和区分阳离子和阴离子模式下的亚铁离子(Fe2+)和铁离子(Fe3+),这是因为亚铁离子和铁离子容易形成具有光谱特征的独特离子络合物。含有 Fe3+ 的峰,如 [Fe3+ (OH)2]+ 和 [Fe3+ (OH)a Clb]-,对于区分样品中铁的两种氧化态尤为重要。所记录的模拟光谱可能有助于确定欧罗巴和土卫二海洋氧化态的特征,从而对热液过程和其地表下海洋中生命形式的潜在代谢途径产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Planetary Science Journal
The Planetary Science Journal Earth and Planetary Sciences-Geophysics
CiteScore
5.20
自引率
0.00%
发文量
249
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信